전체기사 최신뉴스 GAM
KYD 디데이

[김정호의 4차혁명 오딧세이] 인공지능은 타임머신을 탈 수 있다

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

마이클 제이 폭스와 타임 머신

필자가 미국 유학을 시작한 해가 서울올림픽이 열리던 1988년이다. 그때 학교에서 퇴근하면 가족과 함께 저녁식사를 먹으면서 즐겨 보던 텔레비전 드라마가 ‘패밀리 타이즈(Family Ties)’라는 미국 시트콤이다.

    김정호 교수

화목한 가정을 중심으로 가족간에 펼쳐지는 재미있고, 즐거운 이야기이다. 지금 그 드라마를 유튜브로 다시 봐도 재미있다.

특히 그 드라마에서 남자 배우로 마이클 제이 폭스(Michael J. Fox)가 개구장이 남동생으로 나오고, 그의 마음씨 좋은 누나로 배우 저스틴 베이트맨(Justine Tanya Bateman)이 나온다.

맬러리로 나오는 저스틴은 성격 좋은 누나로 남동생 마이클의 장난을 항상 모두 받아주곤 했다.

그 배역들이 모두 호감이 가는 성격들이었다. 마이클 제이 폭스는 나중에 그 드라마에 나오는 다른 여배우와 결혼하게 된다.

1982년부터 1989년까지 미국 NBC에서 방송된 시트콤 ‘패밀리 타이즈(Family Ties)’ 의 출연진. 맨 왼쪽이 배우 ‘마이클 제이 폭스’이고 그 다음이 배우 ‘저스틴 베이트맨’이다. [출처= Biography.com]

그 마이클 제이 폭스를 다시 만난 것은 영화 ‘백 투 더 퓨처(Back to The Future)’ 에서다. 이 영화는 ‘타임 머신’을 타고 과거로 돌아가서 일어나는 이야기를 다루고 있다. 영화 '백 투 더 퓨처'는 1985년부터 시작된 영화로 로버트 저메키스 감독, 스티븐 스필버그 제작, 마이클 제이 폭스 주연의 전설적인 SF 3부작 영화이면서 코미디, 드라마, 액션 요소도 모두 들어가 있다.

시간여행과 그에 따른 타임 패러독스를 다룬 영화이다. 1980년대를 상징하는 고전 어드벤쳐 작품이다. 특히 이 영화의 주된 타임머신 기체인 ‘드로리안’은 영화 사상 가장 유명한 타임머신이다. 그 다재 다능하고 유쾌한 배우 마이클 제이 폭스가 현재 파킨슨 병으로 수십 년간 고생하고 있다. 파킨슨 병이 아니라면 아마 더 많은 시트콤과 드라마, 그리고 영화를 찍을 수 있었을 것으로 생각한다. 

이 영화에서 타임머신 기계인 ‘드로리안’이 등장한다. 물리학에서 입장에서 본다면 영화처럼 타임머신을 타고 과거로 돌아가기 위해서는 빛의 속도로 과거의 정보로 거슬러 올라가야 한다. 그러려면 본인이 타고 있는 타임머신이 빛의 속도 이상으로 달려서 과거의 시대로 돌아가야 한다. 과거의 정보는 과거의 빛에 실려 있기 때문이다. 그래서 타임머신은 빛보다 빨리 날아가야 한다. 그러려면 무한대의 에너지가 필요하고 아인쉬타인의 상대성 이론에 위배된다.

이처럼 타임머신을 타고 과거의 데이터를 수집하고 그를 바탕으로 인공지능을 학습할 수 있다면 지금의 세계는 더 개선된 모습을 보일 지 않을까 상상해 본다. 그런데 이렇게 과거로 돌아가는 타임머신이 인공지능 안에도 있다.

1985년부터 발표된 3 부작 어드벤쳐 영화 ‘백투더 퓨처’의 포스터 사진, [출처=Academy Center of the Arts]

인공지능도 과거로 돌아간다

인공지능 구현 방법 중에서 기계나 컴퓨터가 학습을 통해서 스스로 지능을 만들어 가는 방식을 머신러닝(Machine Learning)이라고 한다. 이 머신러닝의 대표적 알고리즘이 딥러닝(Deep Learning) 혹은 딥뉴럴네트워크(DNN, Deep Neural Network)이다.

이 딥러닝의 학습 방법은 입력 데이터를 이용해 학습하는 지도학습(Supervised Learning)과 입력 데이터 없이 스스로 학습하는 비지도 학습(Unsupervised Learning)으로 나뉘어 진다. 바로 이 지도학습에서 중요한 것은 입력데이터를 주고 출력을 비교하여 정답을 알도록 끊임 없이 알려 주어야 한다. 이 과정을 학습(Learning)이라고 하고 딥러닝 인공지능의 핵심 과정이 된다. 그래서 학습 없는 인공지능은 없다.

딥러닝 인공지능 알고리즘에서 입력 데이터를 주고 여러 층의 신경망을 따라 쭉 신호를 전파하면서 최종 출력을 만들어 가는 과정을 순방향 전파(Forward Propagation)이라고 한다. 그리고 이렇게 만들어진 출력이 지도학습을 위한 미리 준비한 정답과 다를 때, 신경망 내의 가중치를 개선해 나아가야 한다.

거꾸로 지능을 개선하는 작업이다. 그러기 위해서는 출력 오차를 확인하고, 그 결과에 따라 역 방향으로 가중치를 고쳐 나아가야 한다. 이처럼 가중치를 꺼꾸로 고치면서 반대방향으로 교정해 가는 과정을 역전파(Back Propagation)이라고 한다. 따라서 역전파 학습 없는 머신러닝 인공지능은 없다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습의 개념, [출처=KAIST]

그러니 역사의 진행 결과를 보고 잘못된 것을 깨닫고, 역사를 거슬러 역사를 고쳐가는 과정이 인공지능에서 바로 역전파 학습이다. 그래서 잘못을 깨닫고 과거로 돌아가 자신을 바꾸는 과정이 바로 딥러닝 알고리즘의 핵심 학습과정이다. 시대를 거꾸로 가는 셈이다.

인간 세계에는 물리적으로 불가능하지만 컴퓨터 알고리즘에서는 가능하다. 그래서 컴퓨터 알고리즘은 위대하고 혁신적이다. 다르게 보면 역전파 학습은 타임머신을 타고 과거로 돌아가는 작업과 같다. 그래서 인공지능도 타임머신을 탄다고 얘기해도 되겠다.

마이클 제이 폭스는 영화 백투더 퓨쳐에서 ‘드로리안’ 타임머신을 타고 과거로 돌아 갔다. 딥러닝 인공지능에서는 출력과 정답차이의 오차, 활성화 함수의 미분 기울기, 그리고 기존의 가중치를 타고 과거로 돌아간다. 특히 활성화 함수의 미분이 과거로 돌아가는 속도를 결정한다. 인공지능에서는 이처럼 순방향 학습과 역방향 학습을 수만 번, 수천만 번 빅데이터 만큼 시행한다. 학습량을 늘리고 지능의 정확성을 높이기 위해서는 데이터가 더 많이 필요하다. 그래서 모든 사물과 사람을 연결해서 데이터를 모은다. 그걸 보통 ‘사물인터넷’이라 부른다.

딥러닝 알고리즘 속의 역전파(Back Propagation) 학습에 필요한 비용함수와 그 학습화 과정을 보여주는 강의노트, [출처=KAIST]

인공지능도 과거 역사에서 배운다

가끔 역사 책을 읽거나, 텔레비전 역사 프로그램을 보거나, 유튜브를 보면서 역사 공부를 다시금 하게 되는 기회가 종종 있다. 점점 유튜브로 역사 공부하는 시간이 길어진다. 그럴 때 마다 역사 공부가 참 재미있고 흥미진진하다. 사건의 역사적 배경과 인물, 결과의 의미를 다시 살펴보게 된다.

최근에는 3.1 운동 의미를 다시 알게 되었다. 3.1 운동의 의미가 우리나라가 ‘대한제국’에서 ‘대한민국’으로 전환하는 큰 계기라는 사실을 처음으로 알게 되었다. 그러고 보면 중고등학교 때 역사 공부는 참으로 재미없게 했다. 수동적으로 받아 적고 외우고 시험 보는 공부가 아니라 스스로 찾고, 발표하고, 토론하는 수업이었다면 훨씬 재미있고 기억에 많이 남았을 것 같은 아쉬움이 남는다. 그러는 과정에서 책도 더 많이 읽을 수 있었을 것이다. 역사는 그 자체가 재미있고, 배울 점이 많다.

인공지능이 똑똑한 것은 데이터로부터 스스로 학습하기 때문이다. 특히 오류가 발생했을 때 과거로 되돌아가 지난 과거를 고친다. 그리고 다시 출발한다. 인간 사회와 다른 점이라 볼 수 있다. 인공지능이 인간보다 똑똑한 이유이기도 하다. 미래에는 인공지능도 우리처럼 역사의 재미를 알게 될까 궁금하다.

대표적인 역사 기록물인 조선왕조실록은 역사 기록의 빅데이터이다. [출처=tistory]

 

joungho@kaist.ac.kr  

  

[김정호 카이스트 전기 및 전자공학과 교수]

 

 

[관련키워드]

[뉴스핌 베스트 기사]

사진
황대헌 "결승서 플랜B 급변경" [서울=뉴스핌] 박상욱 기자 = 한국 남자 쇼트트랙 선수로는 처음으로 3개 대회 연속 메달을 따낸 황대헌(강원도청)은 "이 자리에 오기까지 너무 많은 시련과 역경이 있었다. 너무 소중한 메달"이라고 말했다. 황대헌은 "월드투어 시리즈를 치르면서 많은 실패와 도전을 했고, 그런 부분을 제가 많이 연구하고 공부해서 좋은 결과로 이어졌다"고도 했다. 황대헌은 15일(한국시간) 2026 밀라노·코르티나담페초 동계 올림픽 쇼트트랙 남자 1500m 결승에서 옌스 판트 바우트(네덜란드)에 이어 2위로 은메달을 거머쥐었다. 그는 2018 평창 대회 남자 500m 은메달을 시작으로 2022 베이징 대회에서 남자 1500m 금메달과 남자 5000m 계주 은메달을 땄다. [밀라노 로이터=뉴스핌] 박상욱 기자= 황대헌이 15일(한국시간) 2026 밀라노·코르티나담페초 동계올림픽 쇼트트랙 남자 1500m 시상식에 오르며 주먹을 불끈 쥐고 있다. 2026.02.15 psoq1337@newspim.com 황대헌에게 이번 올림픽은 출발부터 쉽지 않았다. 지난해 11월 네덜란드 도르드레흐트에서 열린 2025-2026 국제빙상경기연맹(ISU) 쇼트트랙 월드투어 4차 대회에서 왼쪽 무릎을 다쳤다. 부상 치료가 완전히 끝나지 않은 상태에서 올림픽을 준비했다. 이날 결승은 9명이 함께 뛰었다. 황대헌은 "2022년 베이징 대회 때는 결승에서 10명이 뛰었다. 그리 놀라운 상황은 아니었다"며 "쇼트트랙 레이스의 흐름이 많이 바뀌어서 공부도 많이 했고, 계획했던 대로 경기를 풀어갈 수 있었다"고 설명했다. 이어 "경기 운영엔 다양한 전략이 있었다. 순간적으로 플랜B로 바꿨다"며 "자세한 내용은 제가 많이 연구한 결과라 소스를 공개할 수는 없다"며 미소를 보였다. psoq1337@newspim.com 2026-02-15 09:10
사진
최가온이 전한 긴박했던 순간 [서울=뉴스핌] 장환수 스포츠전문기자= "들것에 실려 나가면 그대로 끝이었어요." 2026 밀라노·코르티나담페초 동계올림픽 스노보드 여자 하프파이프에서 한국 설상 종목 사상 첫 금메달을 따낸 최가온(세화여고)이 가장 아찔했던 순간을 돌아봤다. 최가온. [사진=대한체육회] 최가온은 14일(한국시간) 이탈리아 밀라노 코리아하우스에서 열린 대한체육회 공식 기자회견에서 전날 결선 1차 시기를 떠올렸다. 그는 리비뇨 스노파크에서 열린 결선 1차 시기에서 크게 넘어지며 한동안 일어나지 못했다. 의료진이 내려와 상태를 확인했고, 들것이 대기한 긴박한 상황이었다. 최가온은 "들것에 실려 나가면 병원으로 가야 했고, 그러면 대회를 포기해야 하는 상황이었다"며 "포기하면 평생 후회할 것 같았다. 다음 선수가 기다리고 있어 시간이 많지 않았는데 잠시만 시간을 달라고 하고 발가락부터 힘을 주며 움직이려 했다"고 말했다. 다행히 걸을 수는 있었지만 코치는 기권을 권유했다. 최가온은 "나는 무조건 뛰겠다고 했지만 코치님은 걸을 수 없는 상태로 보셨다"며 "이를 악물고 계속 걸어보려 했고, 다리 상태가 조금씩 나아져 2차 시기 직전 기권을 철회했다"고 설명했다. [리비뇨 로이터=뉴스핌] 장환수 스포츠전문기자= 최가온이 13일 스노보드 여자 하프파이프 결선 1차 시기에서 넘어지자 의료진이 달려와 상태를 살펴보고 있다. 2026.02.13 zangpabo@newspim.com 1, 2차 시기 연속 실수로 벼랑 끝에 몰렸지만 3차 시기에서 반전이 일어났다. 최가온은 "긴장감이 오히려 사라졌다. 기술 생각만 하면서 출발했다. 내 연기를 완성하겠다는 생각뿐이었다"고 돌아봤다. 그리고 900도와 720도 회전을 안정적으로 연결하며 90.25점을 받아 극적인 역전 우승을 완성했다. 은메달을 차지한 교포 선수 클로이 김(미국)과 관계도 화제가 됐다. 최가온은 "클로이 언니가 안아줬는데 정말 행복했다. 그 순간 '내가 언니를 넘어섰구나' 하는 감정이 몰려왔고 눈물이 터졌다"고 했다. 이어 "경기 전에는 언니가 금메달을 땄으면 좋겠다는 생각이 들 정도로 마음이 복잡했다. 존경하는 선수라 기쁨과 서운함이 동시에 들었다"고 솔직하게 털어놨다. 부상 직후 재도전에 대한 두려움은 없었을까. 그는 "어릴 때부터 겁이 없었다. 언니, 오빠들과 함께 타며 자연스럽게 생긴 승부욕이 두려움을 이겨낸 것 같다"며 웃었다. [리비뇨=로이터뉴스핌] 밀라노-코르티나 2026 동계올림픽 스노보드 여자 하프파이프에서 금메달을 획득한 최가온 선수가 지난 12일 이탈리아 리비뇨 스노파크에서 열린 시상식에서 태극기를 들어 보이고 있다. 2026.02.13 photo@newspim.com 많은 눈이 내린 경기 환경에 대해서도 담담했다. "첫 엑스게임 때 눈이 정말 많이 왔는데 그때에 비하면 괜찮았다. 경기장에 들어갔을 때 함박눈이 내려 오히려 예쁘다고 느꼈다. 시상대에서도 눈이 내려 클로이 언니와 '이렇게 눈이 내리니 좋다'고 이야기했다"고 전했다. 몸 상태는 완전하지 않았다. 그는 "무릎이 아주 아팠지만 많이 좋아졌다"며 "올림픽을 앞두고 훈련 중 다친 왼쪽 손목은 귀국 후 점검해야 한다"고 밝혔다. 이어 "이번 올림픽에서 최고의 경기력을 보여드리지는 못했다. 기술 완성도를 더 높이고 긴장감을 다스리는 법도 보완하고 싶다"며 "먼 미래보다 당장 지금의 나보다 더 나은 선수가 되는 게 목표"라고 말했다. 최가온. [사진=올댓스포츠] 가족에 대한 고마움도 전했다. 최가온은 "아버지가 내가 어릴 때 일을 그만두고 이 길을 함께 걸었다. 많이 싸우기도 했지만 끝까지 포기하지 않고 함께해줘 지금 이 자리에 있는 것 같다"며 고개를 숙였다. 귀국 후 계획을 묻자 "할머니가 해주는 밥을 먹고 싶다. 친구들과는 파자마 파티를 하기로 했다"며 수줍게 웃었다. 금메달과 함께 포상금과 고급 시계를 받게 된 데 대해서는 "과분한 것들을 받게 돼 영광이다. 시계는 잘 차겠다"고 말했다. 스노보드 꿈나무들에게는 "하프파이프는 즐기면서 타는 게 가장 중요하다. 다치지 말고 즐기면서 탔으면 좋겠다"고 조언했다. 들것 앞에서 멈추지 않았던 17세의 선택은 결국 한국 설상 종목의 새 역사가 됐다. zangpabo@newspim.com 2026-02-14 22:35
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동