전체기사 최신뉴스 GAM
KYD 디데이
산업 ICT

KAIST, 딥러닝 기반 실시간 '기침 인식 카메라' 개발

기사입력 : 2020년08월03일 17:26

최종수정 : 2020년08월03일 17:26

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[서울=뉴스핌] 김지완 기자 = 국내 연구진에 의해 기침 인식 카메라가 개발됐다. 코로나19 재확산 추세에서 전염병 감지에 큰 도움이 될 것으로 기대된다.

KAIST는 기계공학과 박용화 교수 연구팀이 에스엠 인스트루먼트와 공동으로 실시간 기침 소리를 인식하고 기침하는 사람 위치를 이미지로 표시해주는 '기침 인식 카메라'를 개발했다고 3일 밝혔다.

[서울=뉴스핌] 김지완 기자 = 연구실 환경에서 기침 인식 카메라의 기침 발생 위치표시. [제공=KAIST] 2020.08.03 swiss2pac@newspim.com

작년 말부터 시작된 세계적 유행성 전염병 코로나19가 최근 미국·중국·유럽 등 세계 각국에서 재확산되는 추세로 접어들면서 비접촉방식으로 전염병을 감지하는 기술에 대한 수요가 증가하고 있다.

코로나19의 대표적인 증상이 발열과 기침인데, 현재 발열은 열화상 카메라를 이용해 직접 접촉을 하지 않고도 체온을 쉽게 판별할 수 있다. 문제는 비접촉방식으로는 기침하는 사람의 증상을 쉽사리 파악하기 어렵다는 점이다. 박 교수 연구팀은 이런 문제를 해결하기 위해 기침 소리를 실시간으로 인식하는 딥러닝 기반의 기침 인식 모델을 개발했다.

연구팀은 또 열화상 카메라와 같은 원리로 기침 소리와 기침하는 사람의 시각화를 위해 기침 인식 모델을 음향 카메라에 적용, 기침 소리와 기침하는 사람의 위치는 물론 심지어 기침 횟수까지를 실시간으로 추적하고 기록할 수 있는 '기침 인식 카메라'를 만들었다.

연구팀은 기침 인식 카메라가 사람이 밀집한 공공장소에서 전염병의 유행을 감지하거나 병원에서 환자의 상태를 상시 모니터링할 수 있는 의료용 장비로 활용될 것으로 기대하고 있다.

연구진은 기침 인식 모델 개발을 위해 합성곱 신경망(Convolutional Neural Network, CNN)을 기반으로 지도학습(Supervised Learning)을 적용했다. 1초 길이 음향신호의 특징(Feature)을 입력 신호로 받아, 1(기침) 또는 0(그 외)의 2진 신호를 출력하고 학습률의 최적화를 위해 일정 기간 학습률이 정체되면 학습률 값을 낮추도록 설정했다.

연구진은 기침 인식 모델의 훈련 및 평가를 위해 구글과 유튜브 등에서 연구용으로 활발히 사용 중인 공개 음성데이터 세트 '오디오세트(Audioset)'를 비롯해 '디맨드(DEMAND)'와 '이티에스아이(ETSI)', '티미트(TIMIT)' 등에서 데이터 세트를 수집했다. 이 중 '오디오세트'는 훈련 및 평가 데이터 세트 구성을 위해 사용했고 다른 데이터 세트의 경우 기침 인식 모델이 다양한 배경 소음을 학습할 수 있도록 데이터 증강(Data Augmentation)을 위한 배경 소음으로 썼다.

합성곱 신경망은 시각적 이미지를 분석하는 데 사용되는 인공신경망(생물학의 신경망에서 영감을 얻은 통계학적 학습 알고리즘)의 한 종류다. 지도학습은 훈련 데이터로부터 하나의 함수를 유추해내기 위한 기계 학습(Machine Learning)의 한 방법이다.

[서울=뉴스핌] 김지완 기자 = (왼쪽부터) 박용화 교수, 김영기 대표, 이경태 박사과정, 김성후 박사과정, 남현욱 박사과정. [사진=KAIST] 2020.08.03 swiss2pac@newspim.com

데이터 증강을 위해 배경 소음을 15~75%의 비율로 오디오세트에 섞은 후, 다양한 거리에 적응할 수 있게 음량을 0.25~1.0배로 조정했다. 훈련 및 평가 데이터 세트는 증강된 데이터 세트를 9:1 비율로 나눠 구성했으며, 시험 데이터 세트는 따로 사무실에서 녹음한 것을 사용했다.

모델 최적화를 위해서는 '스펙트로그램(Spectrogram)' 등 5개의 음향 특징과 7개의 최적화 기기(Optimizer)를 사용해 학습을 진행하고 시험 데이터 세트의 정확도를 측정, 성능을 확인한 결과 87.4%의 시험 정확도를 얻을 수 있었다.

연구진은 이어 학습된 기침 인식 모델을 소리를 수집하는 마이크로폰 어레이와 카메라 모듈로 구성되는 음향 카메라에 적용했다. 그 결과 수집된 데이터는 음원의 위치를 계산하는 빔 형성 과정을 거쳐 기침 인식 모델이 기침 소리로 인식할 경우 기침 소리가 난 위치에 기침 소리임을 나타내는 등고선과 라벨이 각각 표시된다.

박 교수팀은 마지막 단계로 기침 인식 카메라의 예비 테스트를 진행한 결과, 여러 잡음 환경에서도 기침 소리와 그 이외의 소리로 구분이 가능하며 기침하는 사람과 그 사람의 위치, 횟수 등을 실시간으로 추적하는 등 현장에서의 적용 가능성을 확인했다. 연구팀은 추후 병원 등 실사용 환경에서 추가 학습이 이뤄진다면 정확도는 87.4%보다 더 높아질 것으로 예상하고 있다.

박 교수는 "코로나19가 지속적으로 전파되고 있는 상황에서 공공장소와 다수 밀집 시설에 기침 인식 카메라를 활용하면 전염병 방역 및 조기 감지에 큰 도움이 될 것ˮ이라고 말했다. 그러면서 "특히 병실에 적용하면 환자의 상태를 24시간 기록해 치료에 활용할 수 있기 때문에 의료진의 수고를 줄이고 환자 상태를 더 정밀하게 파악할 수 있을 것ˮ이라고 강조했다.

한편, 이번 연구는 에너지기술평가원(산업통상자원부)의 지원을 받아 수행됐다.

 

swiss2pac@newspim.com

[뉴스핌 베스트 기사]

사진
[변상문의 화랑담배] 제2회 광복군 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다.  1940년 9월 17일 중국 중경 가릉호텔에서 성대한 행사가 열렸다. 대한민국 임시정부 광복군 창설식이었다. 미국 한인 동포들이 보내온 돈 4만원으로 조직한 군대였다. 지금 돈으로 환산하면 20억 원 정도 된다. 총사령관 이청천 장군, 참모장 이범석 장군, 제1지대장 이준식, 제2지대장 고운기, 제3지대장 김학규, 제5지대장에 나월환을 임명했다. 지대장은 지금의 사단장에 해당한다. 모두 봉오동 전투, 청산리 전투를 비롯하여 남북 만주에서 전개된 항일무장투쟁에 직접 참여하여 활동한 독립군 출신이었다. 한국광복군 훈련반 제1기 졸업사진. [사진= 독립기념관] 임시정부 주석 김구는 포고문을 통해 "국내외 동포들에게 알립니다. 1940년 9월 17일부로 대한민국 광복군을 창설하였습니다. 광복군은 1907년 8월 1일 일제가 대한제국 군대를 해산한 날이 바로 광복군 창설일임을 선언합니다. 광복군은 구 한국군의 후신으로 33년간에 걸친 의병과 독립군의 항일무장투쟁을 계승한 전통 무장 조직입니다"라고 했다. 대한제국 국군-의병-독립군의 군맥(軍脈)과 군혼(軍魂)을 분명하게 잇고 있음을 천명한 것이다. 부대 편성은 소대, 중대, 대대, 연대, 여단, 사단 6단으로 편성하였다. 총 3개 사단을 조직할 계획이었다. 그러나 인원이 적은 상황에서 우선 지대를 만들고, 각 지대를 구대와 분대로 연계한 전투부대를 구성했다. 임시정부에서 1940년 9월 19일 중국 국민당 정부에 통보한 '한국광복군 총사령부 직원 명단'에 의하면, 부대 규모가 총사령부와 4개 단위부대, 여기에다 조선혁명군 부대까지 포함하여 5000여 명이었다. 임시정부에서는 1941년 12월 연합국의 일원으로 일본에 선전포고했다. 1942년에는 미국 측에 "미국이 제주도를 해방 시켜 주면, 중경에 있는 임시정부를 제주도로 옮긴 후, 광복군이 미군과 함께 한반도 상륙작전을 전개하겠다."라고 제안하였다. 이 제안은 실제로 미국 OSS 부대(지금의 CIA)와 1945년 4월부터 8월까지 강도 높은 국내 진공 작전을 준비했다. 주요 훈련은 3개월 기간에 고공낙하, 암살법(권총에 특수장치를 하여 소리 없이 암살하는 방법), 통신(암호의 작성 및 해독법, 무전기 조작 및 수리), 교란 행동, 정보수집, 폭파 등 이었다. 일과는 07:00∼12:00 오전 훈련, 13:00∼18:00 오후 훈련, 19:00∼22:00 야간 훈련이었다. 주요 임무는 대한민국으로 낙하산과 잠수함으로 침투하여 미 공군 공습에 필요한 지형 등의 정보를 제공하고 일본군 군사시설 탐지 및 파괴 지하 유격대를 조직하여 연합군 상륙작전 시 제2선에서 연결하는 작전이었다. 마침내 1945년 8월 7일 모든 훈련을 마치고 국내진공작전 출정식을 개최했다. 개시일은 8월 10일이었다. 출정식 때 장준하 경기도 공작 반장은 "나는 조국광복을 위해 죽음을 선택했습니다. 내가 나의 죽음을 지불하면, 내 능력껏 그 대가가 조국을 위해서 결제될 것입니다. 나의 각오는 한 장의 정수표입니다. 발생인은 장준하, 결제인은 조국입니다"라는 유서까지 작성했다. / 변상문 국방국악문화진흥회 이사장 2025-09-08 08:00
사진
'포스트 이시바' 누구?...고이즈미·다카이치 선두 [서울=뉴스핌] 오영상 기자 = 이시바 시게루 일본 총리가 자민당 총재직 사임을 공식화하면서, 일본 정국의 관심은 차기 자민당 총재 선거로 쏠리고 있다. 집권당 총재가 곧 총리직을 맡는 일본 정치 구조상 이번 총재 선거는 사실상 다음 총리를 뽑는 절차다. 자민당은 조만간 새로운 총재 선거 일정을 확정할 예정이다. 이번 선거에서는 지난 2024년 9월 총재 선거에서 이시바 총리와 경합했던 주요 인사들이 다시 출마할 가능성이 높다. 고이즈미 신지로 농림수산상, 다카이치 사나에 전 경제안보담당상, 하야시 요시마사 관방장관, 모테기 도시미쓰 전 간사장, 고바야시 다카유키 전 경제안보담당상 등이 후보군으로 거론된다. 정국 운영이 소수 여당이라는 제약 속에서 이루어지는 만큼, 차기 총재가 야당과 어떻게 연대할지, 어떤 연립 구도를 짤지가 최대 쟁점으로 꼽힌다. '포스트 이시바' 후보로 꼽히고 있는 고이즈미 신지로 일본 농림수산상 [사진=로이터 뉴스핌] ◆ 고이즈미·다카이치 선두권 현재 여론조사에서는 고이즈미 농림수산상과 다카이치 전 경제안보상이 선두권을 형성하고 있다. 니혼게이자이신문 지난달 29~31일 실시한 여론조사에 따르면 차기 총리에 적합한 인물로 다카이치가 23%, 고이즈미가 22%를 기록했다. 나란히 1, 2위다. 자민당 지지층으로 한정하면 고이즈미가 32%로, 다카이치(17%)를 크게 앞서는 것으로 나타났다. 다카이치는 2024년 총재 선거에서 1차 투표에서 1위를 차지했으나 결선에서 이시바에게 역전패했다. 고이즈미 역시 의원 표에서 선두에 올랐지만 당원 표에서 밀리며 결선에 오르지 못했다. 두 사람 모두 당내 기반과 대중적 인지도를 겸비해 차기 선거에서도 가장 주목받는 주자들이다. 고이즈미 농림수산상은 1981년생(44세)으로 고이즈미 준이치로 전 총리의 차남이다. 2009년 중의원 첫 당선 이후 줄곧 '포스트 아베', '차세대 리더'로 주목받았다. 환경상, 농림수산상을 거쳤으며 개혁 성향과 젊은 이미지로 지지층을 넓혔다. 2024년 총선에서 당 선거대책위원장을 맡았으나 참패 책임을 지고 물러났다. 이후 농림수산상으로 복귀해 쌀 유통 개혁 등 농정 개혁에 매진했다. 대중적 인지도와 '고이즈미 브랜드'라는 정치 자산이 최대 강점으로 꼽힌다. 다카이치 전 경제안보상은 1961년생(64세)으로 보수 강경파로 분류되는 여성 정치인이다. 2021년 총재 선거에 첫 도전해 아베 신조 전 총리의 전폭적 지원을 받으며 3위를 기록했다. 2024년 총재 선거 1차 투표에서 최다 득표(의원 72표, 당원 109표)를 얻었으나 결선에서 이시바 총리에게 역전 당했다. 유일한 여성 후보로서 '보수의 아이콘' 이미지를 갖고 있으며, 아베 전 총리와 가까웠던 의원 그룹이 주된 지지 기반이다. 이시바 정권에서 당직 제안을 거절하며 독자 노선을 유지해 왔다. '포스트 이시바' 후보로 꼽히는 다카이치 사나에 전 일본 경제안보담당상 [사진=로이터 뉴스핌] ◆ 하야시·모테기 등 잠룡도 주목 고이즈미와 다카이치 두 선두 주자 외에 잠룡들의 행보도 주목된다. 하야시 요시마사 관방장관은 옛 기시다파 일부의 지지를 받고 있으며, 이시바 정권의 2인자로서 존재감을 키워왔다. 모테기 도시미쓰 전 간사장은 당내 경험과 풍부한 인맥을 강점으로 삼고, 아소 다로 전 부총리와 교류를 통해 지지 기반을 다지고 있다. 고바야시 다카유키 전 경제안보담당상은 5선 의원으로, 동기 의원들과 옛 니카이파의 지원을 받으며 출마 가능성을 열어두고 있다. ◆ 총재 선거 이후에도 정국 '안갯속' 자민당 총재 선거는 국회의원 표와 당원·당우 표를 합산하는 방식이 원칙이지만, 긴급 시에는 국회의원과 지방 지부 대표만 투표하는 '양원 의원 총회' 방식으로 대체될 수 있다. 이 경우 의원 표의 비중이 커져 파벌 역학이 중요해진다. 차기 총재가 선출되더라도 곧바로 정권 안정으로 이어진다는 보장은 없다. 일본 헌법상 총리는 국회에서 지명되는데, 자민·공명 양당은 현재 중의원과 참의원 모두에서 과반을 잃은 상태다. 따라서 야당이 단일 후보를 세워 결집할 경우, 자민당 총재가 총리로 지명되지 못할 가능성도 배제할 수 없다. 자민당 총재가 총리에 오르더라도, 예산안·세제 개혁 법안 등 국정 운영은 야당 협조 없이는 불가능하다. 이런 이유로 차기 총재는 곧바로 '연립 확대'나 '정책 연대'를 추진할 수밖에 없고, 총재 선거 과정에서도 어떤 야당과 손을 잡을지가 핵심 화두가 된다. 결국 이번 자민당 총재 선거는 단순히 차기 지도자를 뽑는 절차를 넘어, 일본 정치가 다당제 속에서 어떤 연립 구도를 구축할지 시험대가 되는 분기점으로 평가된다. goldendog@newspim.com 2025-09-08 09:26
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동