전체기사 최신뉴스 GAM 라씨로
KYD 디데이
오피니언 외부칼럼

속보

더보기

[이철환의 우주이야기] 우주의 규모와 구성단위

기사입력 : 2022년11월15일 08:21

최종수정 : 2022년11월21일 08:04

[우리나라의 우주 개발이 속도를 내고 있습니다. 올해 6월 한국 최초의 우주발사체 '누리호' 발사가 성공했고, 지난 8월 쏘아올린 달 궤도선 '다누리호'는 우주에서 영상과 사진, 문자를 보내오고 있습니다. 우주에 관한 높아진 관심과 호기심을 풀어주기 위해 경제관료 출신 이철환씨가 최근 출간한 <우주패권의 시대,4차원의 우주이야기>중 일부를 저자와 협의해 칼럼 형식으로 게재합니다]

우리가 사는 지구의 바깥세상에도 지구와 같은 천체가 무수히 많이 존재한다. 이렇게 지구를 포함한 모든 별이 있는 끝없이 넓은 공간을 우주라고 한다. 우주는 유한한가 아니면 무한한가? 사실 우리는 그것을 알지 못한다. 더욱이 우주의 중심이 어딘지도 알 수가 없다. 그래서 천문학자들은 '가시적 우주(可視的 宇宙, visible universe)'와 '관측 가능한 우주(observable universe)'라는 개념을 사용한다.

우주는 워낙 커서 직접 도달하기에 너무 멀다. 그래서 태양계 바깥의 천체의 경우 정보 전달체인 빛을 통해 연구하고 알아내는 수밖에 없다. 이 빛을 받아들여 빛의 세기와 색 정보, 또 감마선부터 전파까지 빛의 파장에 따른 세기를 측정한다. 이런 자료와 물리학적 지식을 동원해 천체의 온도· 나이· 질량 등을 계산한다. 나아가 별이 어떤 상태에 있는지, 은하라면 어떤 종류의 은하이고 어떤 진화 과정을 거쳤으며 미래에는 어떻게 될 것인지, 우리의 우주는 언제 어떻게 태어났고 어떻게 진화해 현재에 이르렀으며 미래에는 어떻게 될 것인지를 연구하고 있다.

지금까지의 관측결과에 따르면 현재의 우주는 대폭발 이후 약 138억 년이 지난 것으로 보인다. 즉 우주의 나이가 138억 살인 것이다. 이는 빛이 우주를 가로지르는데 138억 년이 소요된다는 의미이다. 아울러 우주 반경이 138억 광년이라는 의미이기도 하다. 따라서 가시적 우주는 중심에 우리가 있고 반지름이 138억 광년 되는 가상적인 구로 생각할 수 있을 것이다.

그런데 이론적으로 '관측 가능한 우주(observable universe)'의 크기는 이보다 훨씬 더 큰 것으로 추정되고 있다. 그리고 이 관측 가능한 우주에는 수천억 개의 은하가 있으며, 은하의 구성원인 별은 지구에 있는 모래알의 개수보다도 더 많다. 여기서 '관측 가능'의 의미는 특정한 물체가 발하는 각종 파장 등의 신호가 원리상 영원한 미래에 지구에 닿을 수 있다는 것을 말한다. 이와 같은 개념은 천체에서 발생하는 빛과 다른 신호가 우주팽창의 시작부터 지구에 이르는 데까지 시간이 걸리기 때문에 만들어졌다.

초속 30만km로 이동하는 빛의 속도도, 우리 은하를 가로지르는 데는 약 10만 년, 우리 은하의 바로 이웃 은하로 알려진 안드로메다 은하(Andromeda Galaxy) 까지 이동하는 데는 약 254만 년이라는 천문학적인 시간이 필요하다고 알려져 있다.

우주의 무수한 은하 중에 하나를 이동하는데 이렇게나 오랜 시간이 걸린다면, 우주 전체를 이동하는 데는 과연 얼마나 오랜 시간이 걸릴까? 우주의 일부는 너무 멀어 빛조차 138억 년을 여행해도 지구에 도달하지 못하였다. 그래서 이 부분을 관측 가능한 우주 밖에 있다고 하며, 이렇게 관측이 불가능해지기 시작하는 곳을 '우주의 지평선(cosmic horizon)'이라고 한다.

관측기술의 발전은 우주의 크기를 점점 더 키워나가고 있다. 현시점에서 우리가 관측할 수 있는 가장 멀리서부터 온 빛은 138억 년 전에 출발한 빛이다. 그런데 이 빛이 우리에게 오기까지 걸린 138억 년 동안에도 우주공간은 계속해서 팽창하였고 지금도 팽창하는 중이다.
따라서 그 빛이 출발한 지점과 지구 사이의 현재 거리는 138억 광년보다 훨씬 멀 것이다. 이에 지금까지의 관측 가능한 우주의 크기는 지구를 중심으로 반경 465억 광년, 직경 총 930억 광년의 규모로 추정된다. 즉, 우주는 한쪽 끝과 반대편 다른 끝 사이의 거리가 930억 광년인 큰 공 모양을 하고 있다는 것이다.

그런데 이 관측 가능한 반경은 앞으로도 계속 확장될 것이며, 그 너머의 거리는 우주의 종말까지 기다려도 영원히 관측할 수 없을 것이다. 이렇게 되는 이유는 우주가 가속 팽창하기 때문이다. 허블의 법칙에 의하면 우주는 지금도 계속 팽창하며, 상당히 먼 거리에 있는 천체는 빛보다 더 빠른 속도로 우리로부터 멀어지고 있다. 게다가 암흑에너지라는 미지의 힘에 의해 우주는 가속 팽창을 하고 있음이 밝혀졌다. 이는 결국 관측 가능한 우주 바깥에서 출발한 빛은 우주의 종말까지 기다려도 지구에 영원히 도착하지 못한다는 것을 말한다.

이처럼 전체 우주의 크기에 대해서는 현재로서는 추정할 방법조차 확실하지 않다. 따라서 우주의 크기가 유한한지, 무한한지조차 알 길이 없으며, 단지 확실히 말할 수 있는 사실은 전체 우주가 무한하거나, 유한하고 끝이 있다면 엄청나게 크다는 것이다.

우리가 아는 우주 안의 물질은 5%도 채 되지 않는다. 그동안 인간이 우주를 연구하면서 알아낸 것은 우리가 우주의 95%가 무엇으로 이루어졌는지 모른다는 사실이다. 이 95%의 물질은 다시 27%의 암흑물질과 68%의 암흑에너지로 구성된다. 암흑물질은 질량이 있기에 다른 물질을 끌어당기는 중력을 발휘할 수 있다. 이와 반대로 암흑에너지는 빈 공간에서 우주를 밀어내는 역할을 한다. 우주가 가속 팽창하는 데 주요한 작용을 하는 에너지이다. 우리가 아는 물질의 5%도 4%는 수소와 헬륨으로 이뤄져 있고, 별과 같은 천체는 1%가 채 되지 않는다.

우주는 수억 광년 규모로 은하가 없는 빈 공간인 '거시공동(Void)', 또 이것의 외곽을 따라 은하나 성간물질들이 길게 이어진 '거대가락(Filament)'이 형성되어 있다. 그리고 이 가락들이 두 개 이상 교차하는 지점에는 은하단 혹은 초은하단이 있으며, 이 가락들은 우주 저편까지 서로 엮여나가 해면 또는 거미줄 같은 구조를 형성하고 있다. 우주의 이러한 형태를 '우주의 거대 구조 (large scale structure of the universe)' 라고 부른다.
거시공동 즉 보이드는 우주공간에서 수억 광년 스케일로 텅 빈 것처럼 보이는 구역, 다시 말해 초은하단과 거대가락을 제외한 구역을 말한다. 그렇다고 그 지역에 아예 물질이 없거나 천체들이 전혀 없는 것은 아니다. 단지 그 공간을 빛을 내지 않는 물질인 암흑물질이 채우고 있거나, 특정 천체가 존재하지 않을 뿐이다. 크기는 3천만 광년 ~ 3억 광년 정도이다.

보이드와 보이드 사이에 위치하는 거대가락, 즉 필라멘트는 기다란 실가닥 형태로 구조를 이루고 있다. 그래서 은하단에 새로운 은하들과 가스를 보충하는 통로와도 같은 역할을 한다. 은하뿐만 아니라 보이지 않는 암흑물질의 분포 또한 필라멘트 구조의 분포를 따르고 있다.
우리 은하는 라니아케아 초은하단(Laniakea Supercluster)의 변방에 있는 거대가락 중 하나에 속해 있을 것으로 보인다. 우주가 진화해감에 따라 점점 가늘어지며 가닥의 개수 또한 감소한다. 먼 미래에는 초은하단으로 전부 흡수되어 사라질 것으로 보인다.

특히 거대한 규모의 필라멘트가 길게 늘어져 있는 경우를 장성(長城), 또는 '거대한 벽(Great wall)'이라고 부른다. 이는 은하들의 군집 단위 중 가장 큰 단위로 초은하단의 군집체다. 거대한 벽의 길이는 약 5억 광년 정도이며 높이는 약 2억 광년, 그리고 두께는 약 1천 5백만 광년 정도가 된다.


지금까지 발견된 거대한 벽들로는 13억 광년 규모의 '슬론 장성(Sloan Great Wall)', 퀘이사들의 필라멘트인 40억 광년 규모의 'Huge-LQG'가 있다. 그리고 가장 큰 구조물로 알려진 '헤라클레스자리-북쪽왕관자리 장성(Hercules-Corona Borealis Great Wall)'은 100억 광년에 달한다. 이는 관측 가능한 우주의 약 11%를 차지하는 엄청난 크기이며, 태양의 약 10^19배에 달하는 질량을 가지고 있다.

이처럼 우주는 다양한 구조를 지니고 있다. 규모가 작은 순서부터 보면 은하(Galaxy), 은하군(Group of galaxies), 은하단(Galaxy Cluster), 초은하단(Galaxy Superclusters), 큰 구조물 등이 있다. 은하군과 은하단들이 무리를 지어 초은하단을 이루고 있으며, 초은하단 이상 큰 규모의 천체를 우주의 거대 구조(large scale structure of the universe)라고 부른다.

이중 은하는 우주를 구성하고 있는 기본단위로, 수천억 개의 별과 가스 성운 · 암흑 성운 등으로 이루어져 있다. 은하는 항성, 밀집성, 성간물질, 암흑물질 등이 중력에 의해 뭉친 거대한 천체이다. 우주를 구성하고 있는 기본단위인 은하는 우주를 사람의 몸으로 비유하면 세포에 해당한다. 따라서 은하는 우주에 대한 수많은 정보를 갖고 있다. 우주에는 이러한 은하가 수천억 개가 존재한다고 한다.


우리가 살고 있는 태양계를 포함하는 은하는 '우리 은하' 또는 은하계라고 부른다. 수 세기 동안 사람들은 지구가 속한 '우리 은하'를 유일한 은하계로 생각했다. 그러나 천문관측 기술의 발전으로 수많은 외부 은하들이 속속 밝혀지고 있다. 우리 은하처럼 다른 많은 은하에서도 성운이라고 하는 성간 가스와 티끌 입자 구름을 볼 수 있다.

은하의 크기는 은하마다 매우 다양하나 일반적으로 매우 큰 규모다. 은하는 수많은 별들로 이루어져 있는데, 각 은하에는 보통 10억 개 이상 수천억 개의 별이 있다. 은하의 지름은 대략 수만~수백만 광년으로 추정된다. 크기가 보통 수준 이상인 우리 은하는 지름이 10만 광년에 이른다. 한 은하단 안에서 은하간 거리는 평균 약 100만~200만 광년이고, 은하단간 공간은 이것의 100배 정도 될 것이다.


지금까지 발견된 은하 중 가장 큰 'IC 1101 은하'는 지름이 약 400만~600만 광년 정도로 추정된다. 우리 은하보다 무려 40~60배 더 크다. 심지어 우리 은하와 안드로메다 은하(Andromeda Galaxy) 사이의 거리 254만 광년을 훌쩍 넘는다. 또 거의 모든 은하는 초대질량 블랙홀을 중심부에 갖고 있을 것으로 추측된다. 모체 은하의 중앙팽대부가 크고 무거울수록 블랙홀의 질량도 큰 경향을 지닌다.


가끔 은하들끼리도 서로 충돌하거나 다른 은하들을 잡아먹고 크기를 불리기도 한다. 우리 은하도 우주 초기에 이런 과정을 거치면서 점점 덩치가 커진 것으로 추정되며, 마젤란 은하는 이 과정의 희생양이 된 것으로 알려져 있다. 그리고 우리 은하는 수십억 년 후 바로 곁에 위치한 규모가 2배 이상 더 큰 안드로메다 은하와 충돌할 것으로 예상되고 있다. 우리 은하와 안드로메다 은하는 시간당 40만㎞ 속도로 서로 가까워지고 있다. 결과적으로 약 45억 년 후면 두 은하가 충돌해 거대한 하나의 타원은하가 될 예정인데, 천문학자들은 태어나지도 않은 이 은하에 '밀코메다'(Milkomeda)'라는 이름을 붙여놓았다. 

관측 가능한 범위 내에서의 은하의 총수는 무려 수천억 개 이상인 것으로 알려져 있다. 또한, 이들 은하의 대다수는 은하단 또는 은하군을 이루고 있다. 은하단은 은하들이 모여 만드는 구조로, 보통 수백~수천 개의 은하들이 밀집되어 있다. 은하군은 은하단보다 작은 은하들의 모임으로 보통 수십~백여 개의 은하들이 모여 있다. 우리 은하가 속한 국부은하군이 여기에 속한다.

초은하단은 은하단들이 여러 개 모여 만드는 구조로 우주에서 가장 거대한 구조 중 하나이다. 일반적으로 초은하단은 약 1억 5천만 광년 이내의 영역에서 수십 개의 개별적인 은하단을 가진다. 은하단과는 달리, 초은하단은 서로 중력에 의해 결집되어 있지 않다. 따라서 초은하단에 포함되더라도, 초은하단은 자체 중력만으로 우주팽창을 이겨내지 못하기 때문에 우주가 진화할수록 점점 느슨해지고 있으며 먼 미래에는 개개 은하단 단위로 뿔뿔이 흩어져 버릴 것으로 예측된다. 그 질량은 보통 태양의 1,000조 배~1경 배 정도 된다.

관측 가능한 우주에서의 초은하단의 수는 1,000만 개로 추정된다. 대표적으로 우리 은하가 속한 라니아케아 초은하단이 있다. 우리 은하는 국부은하군(局部銀河群, Local Group of Galaxies)에, 그를 포함하는 라니아케아 초은하단(Laniakea Supercluster)에 포함되어 있다. 국부은하군은 폭이 1,000만 광년이지만, 라니아케아 초은하단은 폭이 5억 광년 이상이다.

CES 2025 참관단 모집

[뉴스핌 베스트 기사]

사진
LH "윗집 발망치 소리, 내년부터 끝" [세종=뉴스핌]김정태 건설부동산 전문기자= 지난 21일 한국토지주택공사(LH)의 주택성능연구개발센터(HERI). 세종시에 위치한 이곳에는 주택 성능을 시험할 수 있는 여러 시험동이 있지만, 5층짜리 실제 아파트 건물 한 동이 눈에 들어왔다. 출입구 한켠에는 'db35lab(데시벨 35 랩)'이란 영문과 숫자 표기가 부착돼 있었다. 아파트 1층 내부에 들어가야 이 표기의 의미를 알게 됐다. 이는 LH가 층간소음 1등급 기준인 37데시벨보다 낮은, 도서관처럼 조용한 집으로 만들겠다는 의지를 담은 층간소음기술연구소의 시험동 이름이다. 층간소음 등급별 시연 모습 [사진=국토부기자단 공동] 거실에 설치된 대형 모니터 화면에는 2층의 층간소음을 일으킬 수 있는 런닝머신, 책상과 의자, 공 등의 도구들이 보였다. 우선 화면을 통해 윗층에서 아래층에 전달되는 성인의 발걸음 소리를 들려줬다. 말 그대로 '발망치' 소리였다. 들려오는 소음은 49데시벨로 4등급 수준이다. 층간소음의 기준이 제대로 정립되지 않은 2005년 전에 지어진 공동주택의 경우 일부에서 이러한 불편함을 느낄 수 있는 중량충격음이다. 이번에는 실제로 윗층에서 걷는 소리를 듣는 순서였는데, 귀를 쫑긋 세우지 않고서는 소음을 느끼기 어려웠다. 미세한 진동음이 들리긴 했지만, 불편한 수준은 아니었다. 이어 1m 높이에서 3kg 무게의 공을 떨어뜨리는 실험도 시연됐다. 이는 아이들이 뛰어다니는 중량충격음으로, 역시 4등급 수준에서는 참기 어려운 소음과 진동이 느껴지지만, 이곳의 실제 시연에서는 역시 진동음이 확 줄었다. 의자 끄는 소리는 비교적 가볍고 딱딱한 충격음이어서 경량충격음이라고 하는데 4등급 수준에서는 참기 어려울 정도로 불편했지만, 실제 시연에서는 거의 들리지 않을 정도로 충격음이 전달되지 않았다. 이처럼 층간소음이 획기적으로 줄어든 데는 1등급 기준인 37데시벨에 맞춘 성능으로 시공된 바닥 때문이었다. 기존 슬래브 두께보다 두꺼운 250mm로 시공하고, 그 위에 40mm 복합완충재와 30mm 고밀도몰탈 및 와이어 메쉬 등을 함께 깔아 놓은 바닥재다. 공동주택 층간소음 저감기술은 2023년부터 개발되기 시작했으나, 슬래브 두께는 210mm로 상대적으로 얇고 낮은 등급의 완충재와 일반 몰탈을 적용해 3등급 수준에 머물렀으나, 이를 매년 개선해 온 결과 올해 1등급 기준을 충족하게 됐다. LH는 이러한 기술 개발을 실험동 연구에 그치지 않고, LH 공동주택 각 현장에 실증 시공을 하면서 실증 결과 데이터를 쌓아왔다. LH가 층간소음 저감기술을 처음으로 적용한 단지는 양주회천 A15블록으로, 당시 3등급 수준이었으나 지난해에는 평택고덕 ab57-2블록에 2등급 수준으로 끌어 올려 적용했다. LH 연구원 관계자는 "이 같은 1등급 기준을 달성하기 위해 2022년부터 지속적으로 관련 기술과 공법을 연구해 왔다"면서 "47개의 기술 모델 개발과 총 1347회에 걸친 실증을 거쳐 자체 1등급 기술 모델을 정립해 내년부터 주택 설계에 본격적으로 적용할 예정"이라고 설명했다. 다만, 이 같은 1등급 기준 설계로 분양가 상승의 요인이 되는 것은 사실이다. 기존 공동주택 24평형(전용면적 59㎡) 기준으로 가구당 300만~400만 원의 공사비가 더 소요되는 것으로 LH는 추정하고 있다. 정운섭 LH 스마트건설본부장은 "층간소음 1등급 설계 적용 때문에 수분양자의 분양가 상승 부담으로 돌아가지 않도록 자체 원가절감과 함께 정부 재정 지원을 요청한 상태"라면서 "지속적인 기술 개발로 공사비 상승의 주요인인 슬래브 두께를 슬림화하면서도 1등급 기준을 충족할 수 있도록 할 계획"이라고 말했다. 층간소음감지기를 통해 경고 알람이 뜨는 월패드 시연 장면 [사진=국토교통부기자단 공동] 층간소음 1등급 설계는 새로 짓는 공동주택에서만 가능하다. 때문에 구축에서는 이러한 혜택을 누리기 어렵다. LH는 이를 보완하는 방안으로 층간소음 감지기를 IT업체와 협력해 개발 중이다. 바닥에 여러 차례 충격을 줄 경우, 층간소음 감지기의 센서가 작동해 해당 세대 월패드를 통해 주의를 당부하는 알람이 뜨도록 하는 장치다. 정승호 LH 스마트주택기술처 팀장은 "구조적으로 층간소음을 줄일 수는 없겠지만, 층간소음을 일으키는 기준을 해당 세대에게 알림으로써 아래층 이웃과의 분쟁을 줄일 수 있도록 고안한 장치"라고 말했다. 실제 이날 시연은 기존 공동주택에 적은 비용으로도 층간소음을 저감시킬 수 있다는 점에서 팸투어에 참여한 국토교통부 기자들에게 큰 호응을 얻었다. 층간소음 1등급 바닥구조 [사진=뉴스핌DB] LH는 바닥에서 발생하는 층간소음에 국한하지 않고, 옆 세대와의 벽간소음, 화장실 배관 소음 등 공동주택에서 발생하고 있는 다양한 생활소음 저감 방안도 마련하고 있다. 벽간소음을 저감하는 소음 차단 성능 1등급 벽체 구조는 2019년 11월부터 이미 설계에 반영한 바 있다. 내년부터는 화장실 배관이 아래층을 통하지 않고 각 세대 내에서 설치되는 자체 배관을 적용해 배관을 통해 전달되는 소음도 줄여나간다는 계획이다. 또 내구성이 좋은 장수명 주택, 수요자의 취향에 맞게 가변형 평면 구성이 가능한 라멘 구조 주택, 레고처럼 조립·건설하는 모듈러 주택 등 주택 건설의 새로운 대안으로 부상하는 주택 유형에도 층간소음 1등급 접목 방안을 모색해 적용 범위를 지속적으로 확대해 나가기로 했다. LH는 층간소음 저감 기술 저변을 민간으로 확산해 나간다는 방침이다. 우선, 민간의 고성능 신기술을 발굴하고, 다양한 1등급 기술 요소의 시장화를 지원한다는 방침이다. 올해에는 층간소음 기술 마켓을 통해 6개의 고성능 기술을 발굴했으며 LH 공공주택 현장에서 그 성능을 검증해 상용화를 추진하고 있다. LH는 층간소음 1등급 적용 확산을 위해 db35lab을 내년 3월부터 전면 개방하기로 했다. 자체 층간소음 시험 시설이 없는 중소기업에 데시벨 35랩을 테스트베드로 제공해 기술 개발을 지원한다는 것이다. LH는 또 그간 개발해 온 층간소음 저감 기술 요소와 시공법, 실증 결과를 중소 민간 건설사들과 공유할 계획이다. 더불어 자체 기술 개발과 층간소음 저감 시공·품질관리에 어려움을 겪는 건설사들에 대한 기술 지원도 아끼지 않겠다는 입장이다. 이날 이한준 LH 사장은 "2년 전 취임 당시 제일 먼저 강조한 게 층간소음 문제 해결을 약속한 것이었다"면서 "내년부터는 LH가 짓는 모든 아파트에 1등급 기준을 적용해 국민 일상의 생활 고통을 덜어주는 데 앞장서겠다"고 말했다. 그러면서 "궁극적으로는 벽식 구조의 공동주택에서 벗어나 라멘(기둥식) 구조와 모듈러에도 층간소음 1등급 기준을 적용해 100년 이상 가는 장수명 주택의 근간을 마련하겠다"고 덧붙였다. dbman7@newspim.com 2024-11-24 11:00
사진
기후동행카드, 고양·과천도 30일부터 [서울=뉴스핌] 이경화 기자 = 서울시는 '기후동행카드'가 오는 11월 30일 첫 차부터 고양시와 과천시까지 서비스를 확장한다고 21일 밝혔다. 이로써 서울~고양~과천을 오가는 시민들도 월 5만~6만원대로 기후동행카드의 무제한 혜택을 받을 수 있게 된다. 지난 1월 27일 서울 지역을 대상으로 출발한 기후동행카드는 3월 30일 김포골드라인, 8월 10일 진접선·별내선까지 확대됐다. 서울 공동생활권인 인구 100만의 대규모 도시 고양시와 지리적으로 서울시와 경기남부의 길목에 위치한 과천시까지 연결됨에 따라 수도권으로 본격 확대되는 계기가 될 것으로 시는 기대한다.  서울 외 지역 기후동행카드 이용 가능 도시철도 구간 [이미지=서울시] 서울시와 고양시, 과천시는 지난해 2~3월 기후동행카드 참여 업무협약을 체결한 이후 후속 논의를 통해 구체적인 시행방안을 마련하고 11월 30일 고양시(3호선·경의중앙선·서해선), 과천시(4호선)의 기후동행카드 참여를 확정지었다. 관계기관들과 함께 시스템 개발·최종 점검을 완료했다. 이번 확대로 3호선은 고양시 일산서구 대화역에서 서울시 송파구 오금역까지 모든 역사(44개)에서 기후동행카드를 이용할 수 있게 된다. 경의중앙선은 고양시 일산서구 탄현역에서 구리시 구리역까지 34개 역사, 서해선은 고양시 일산서구 일산역에서 서울시 강서구 김포공항역까지 7개 역사, 4호선은 남양주시 진접역에서 과천시 정부과천청사역사까지 34개 역사에서 기후동행카드를 이용할 수 있다. 이에 더해 현재 기후동행카드 서비스 범위에 이미 고양시를 경유하는 서울 시내버스 28개 노선과 과천시를 경유하는 6개 노선이 포함돼 있음을 고려하면 서울과 고양·과천을 통근·통학하는 약 17만 시민의 이동 편의가 더욱 증진될 것으로 보인다.  또 이용범위가 대폭 확대되면서 과천·고양 등 시민들도 기후동행카드의 다양한 문화 혜택을 동일하게 누릴 수 있다. 과천시 4호선 확대로 대공원역도 기후동행카드를 이용할 수 있는 만큼 방문 시 서울대공원 50% 할인 등 혜택을 참고하면 된다.  기후동행카드는 올해 1월 23일 서비스 시작 이후 70일 만에 100만 장이 팔리는 등 시범사업 단계부터 큰 호응이 확인된 바 있다. 7월부터 본사업에 들어가면서 청년할인권·관광객을 위한 단기권 등 다양한 혜택이 더해졌다. 평일 최대 이용자가 65만명이 넘어가는 등 인기가 지속되고 있다. 서울시는 고양·과천 지하철 적용을 시작으로 수도권 시민들에게도 실질적인 혜택을 제공할 수 있도록 관련 협의·시스템 개발 검토를 적극 추진할 계획이다. 향후 기후동행카드의 무제한 확장을 위한 타 경기도 지자체와의 논의 역시 급물살을 탈 것으로 기대된다고 시는 덧붙였다.  기후동행카드를 이용하려면 안드로이드 기반 휴대전화에서 '모바일티머니' 앱을 무료로 다운받아 충전하면 된다. 실물카드는 서울교통공사 1~8호선 고객안전실, 지하철 인근 편의점 등에서 구매한 후 서울교통공사 1~8호선, 9호선, 신림선·우이신설선 역사 내 충전기에서 권종을 선택·충전 후 사용할 수 있다.  기후동행카드의 고양시, 과천시 확대 등에 관한 자세한 내용은 고양시(031-909-9000), 과천시(02-3677-2285), 서울시 120 다산콜센터로 문의하면 된다. 윤종장 서울시 교통실장은 "김포·남양주·구리에 이어 고양·과천 확대로 경기도 동서남북 주요 시군까지 기후동행카드의 무제한 대중교통 혁신이 이어지고 있다"며 "교통비 절감·생활 편의·친환경 동참 등 일상 혁명을 수도권 시민들까지 누릴 수 있도록 수도권 지역 서비스 확대·편의 향상에 총력을 기울이겠다"고 말했다.  kh99@newspim.com 2024-11-21 11:15
안다쇼핑
Top으로 이동