전체기사 최신뉴스 GAM
KYD 디데이
산업 재계·경영

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 미래, 창작의 미래

기사입력 :

최종수정 :

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

호모 사피엔스는 직병렬 구조에 익숙하다 

1970년대 서울역 귀성 기차 구매 장면 사진은 과거 어려운 시절 추억의 한 모습이다. 사진 속을 보면 시민들이 서울역 광장을 꽉 메우고 여러 개의 줄로 쭉 늘어 서서 있다.

      김정호 교수

거기에는 고향의 부모, 형제, 친구들의 모습이 겹쳐져 있다. 서울역 역사 방면에는 매표구가 여러 개가 있게 되고 그 숫자만큼 시민들의 줄이 쭉 병렬로 늘어져 있다.

그러면서 고향의 부모님 뵙고 싶은 마음에 밤을 새워 기다렸을 것이다. 각 열차 구매 행렬은 쭉 늘어선 직렬 종대 행렬로 이루어져 있고, 그 줄이 다시 여러 개의 병렬 줄로 늘어 선다.

이처럼 우리는 생활 속에서 일의 순서를 효과적으로 처리하기 위해서는 순서를 지키는 ‘직렬’ 줄과, 그 일의 처리 속도를 높이는 ‘병렬’ 줄이 같이 존재한다.

질서를 지키기 위해 줄을 잘 서는 것도 국가와 사회의 평가 잣대가 된다.

1980년대 서울역 앞에서 어른들이 자녀와 함께 귀성 기차표를 구매하기 위해 줄을 서 있다. [출처=tistory]

전기 부품의 구성과 연결 상태를 회로 모델 심볼로 도식화한 것이 전기 회로도 이다. 이러한 전기 회로도에는 전기 부품이 직렬과 병렬 연결의 조합으로 이루어져 있다. 예를 들어 저항, 모터, 전등, 스위치 등과 같은 부품이 쭉 직렬(Serial)로 연결되어 있으면 거기서 소모되는 전압을 모두 더해서 총합하면 그 전압 크기만큼을 외부 배터리나 전원 장치에서 공급해야 한다. 이때 모든 부품에 흐르는 전류는 같고 전압의 합은 외부 배터리 전압과 일치한다. 이 법칙을 회로의 전압법칙(Kirchhoff’s Voltage Law)라고 한다. 모든 부품에 일정 전류를 공급할 때 직렬 연결 방식을 선택한다.

반면에 전기 부품을 병렬(Parallel)로 연결하면 모든 부품에 일정한 전압이 걸리고, 각 부품에 흐르는 전류의 총합이 외부에서 공급하는 전류의 양이 된다. 이 법칙을 회로의 전류법칙(Kirchhoff’s Current Law)라고 한다. 이처럼 회로에서 일정한 전류를 흘리는 직렬 연결의 장점과 일정한 전압을 거는 병렬 연결의 장점에 따라 직렬 회로와 병렬회로를 선택한다.

하지만 전체 전기 회로의 구성은 직렬과 병렬회로의 조합으로 이루어 진다. 보통 신호를 처리하는 전자회로도 마찬가지이고, 신호를 주고 받기 위한 통신 회로도 마찬가지이다. 4차 산업혁명의 핵심 부품인 반도체 메모리 내부의 회로도 그렇고 프로세서 반도체 내부 회로도 마찬가지이다.

 

인공지능이 소설 쓰고 영화 만드는 시대 온다

과거 서울역 광장의 귀성객 모습과 전기회로의 경우와 마찬가지로 고성능 인공지능 딥러닝 네트워크도 단위 딥러닝(DNN) 구조의 직병렬(Serial-Parallel) 조합으로 구성된다.
필자가 정의하는 대표적인 직렬형 인공지능 네트워크가 CNN(Convolution Neural Network)이다. CNN은 공지능으로 영상을 인식하는데 탁월한 성능을 나타낸다. 사진을 입력하면 한 단계씩 뉴런 층(Layer)을 지나면서 점차 영상 해석 결과가 구체화하고, 추상화되면서 최종적으로 대상을 인식하고 지표(Tag)를 붙인다. 이처럼 CNN 인공지능에서는 뉴런 층이 순서대로 연결되고 신호가 전파한다.

그런데 언어 인식에 주로 쓰이는 순환신경망(Recurrent Neural Network)은 병렬형 (Parallel) 인공지능 망으로 구분할 수 있다. 언어의 경우 주어, 목적어, 동사 등 순서가 정해져 있다. 우리가 “What is your name?” 하고 묻는다면 질문의 단어 자체가 ‘What’, ‘is’, ‘your’, ‘name’ 으로 시간적으로 순차적으로 등장한다. 따라서 한 단어 한 단어 등장할 때 마다 순서대로 기다리면서 병렬적으로 연결된 신경망이 동작한다. 그리고 한 신경망의 해석과 판독 결과가 그 다음 신경망으로 전달된다. 그래서 시간적으로 순차적으로 동작하는 대표적인 병렬형 신경망이 RNN이 된다.

이러한 병렬형 인공지능인 RNN에서 하나의 입력에 대해서 여러 개의 출력(one-to-many)을 낼 수도 있다. 각 출력은 각각 CNN이나 DNN이 만들어 낸다. 이러한 경우 하나의 사진 이미지 입력에 대해서 사진의 제목을 출력을 내놓는 이미지 캡셔닝(Image Captioning) 작업에 사용할 수 있다. 사진의 제목은 단어들의 나열이므로, 여러 개의 병렬 출력이다.

또한 RNN에서 다수의 입력에 대해서 하나의 출력(many-to-one)을 만들 수도 있다. 이 경우 입력 문장으로부터 긍정적 감성인지 부정적 감성인지를 판별하는 감성 분류(Sentiment Classification) 모델에 사용할 수 있다. 그리고 복수입력- 복수출력(many-to-many)의 모델의 경우에는 입력 문장으로부터 대답을 문장으로 출력하는 챗봇의 경우이다. 또한 입력 문장으로부터 번역된 문장을 출력하는 번역기에 사용할 수 있다.

언어 이해에 주로 쓰이는 순환 신경망(RNN)의 직병렬 조합 구조, [출처=ratsgo’s blog]

 

이러한 CNN, RNN의 직병렬 조합된 복합 인공지능은 스스로 영화를 감상할 수 있다. 그러면 한 장면 한 장면을 파악하고 판단하는 인공지능은 직렬형 CNN 인공지능이 담당한다. 그런데 1초에 60장씩 계속 장면이 순서대로 바뀌어 가는 것을 이해하고 예측하는 것은 RNN과 같은 병렬형 인공지능이 담당하게 된다. 이 인공지능은 영화의 내용과 의미를 파악하고 다음 장면을 예측할 수 있다. 이 복합 인공지능은 영화를 보면서 눈물을 흘릴 수 있고, 웃을 수도 있다.

이처럼 미래 인공지능 네트워크도 다양한 기능을 가진 각 인공지능 망의 직병렬 조합으로 이루어지게 된다. 이렇게 되면 인공지능이 영화를 보면서 텍스트를 자동으로 붙이게 될 수 있고, 그 영화를 감상하게 된다. 그 결과를 기사로도 쓸 수 있게 된다. 여기에 변증법적 인공지능인 GAN(Generative Adversarial Network)을 결합하면 인공지능이 영화나 소설도 직접 쓸 수 있다.

음성, 영상, 텍스트 멀티 모드 복합 (Multi-modal Hybrid) 인공지능의 발전 방향, [출처=KAIST]

 

인공지능이 스스로를 복제한다면?

이처럼 미래 인공지능은 영상, 음성, 언어, 이해와 창작 기능을 바탕으로 더 나아가 소설, 영화 등 복합적 매체 내용을 이해하고, 설명하고, 예측하는 기능을 갖는 방향으로 진화해 갈 것이다. 그리고 창작도 할 수 있게 된다. 더 나아가 예술과 역사 등 인문학도 감상하게 된다. 상황을 파악하고 이해하는 능력도 갖게 되고, 인간처럼 눈치도 갖게 된다. 더 나아가 인간과 같은 창조와 모방의 기능을 갖게 된다. 그러려면 지금까지 개발된 다양한 인공지능 알고리즘이 복합되어 섞이게 된다.

지금까지 인공지능은 학습 데이터를 이용해서 발전했다. 그래서 빅데이터가 중요했다. 따라서 학습 데이터의 선택에 따라 인공지능도 도덕, 이념, 종교도 갖게 된다. 하지만 더 먼 미래에는 데이터가 없어도 스스로 학습하는 비지도 학습 기능을 갖게 된다. 컴퓨터 스스로 데이터를 생산하고 학습하게 된다. 현재 대표적인 비지도 인공지능이 강화학습(Reinforcement Learning)방법이다.

또한 인공지능 자체의 알고리즘도 일정 부분 인공지능 스스로 개발하는 시대가 언젠가는 올 것으로 본다. 그러면 스스로 인공지능이 자신을 개선하고 진화하고 복제하고, 생산한다. 이러한 시대가 되면 인공지능 보유 여부가 인간 사이에 불평등을 만들 수 있다. 더 나아가 ‘인공지능’과 ‘인간’ 사이에 불평등이 올 수 있다.
하지만 이러한 인공지능이 발전하는 데는 더 빠른 컴퓨터, 더 빠른 메모리 반도체가 필요하다. 더 나아가 전력소모를 지금 보다 극단적으로 줄여야 한다. ‘인공지능 천하’ 시대의 도래 여부는 반도체 기술의 성능 발전 여부와 전력 소모를 줄이는 기술에 구현에 달려 있다. 인간이 ‘반도체’ 주권과 ‘전기 공급’ 주권을 놓지 말아야 한다.

 

joungho@kaist.ac.kr

[김정호 카이스트 전기 및 전자공학과 교수]

[관련키워드]

[뉴스핌 베스트 기사]

사진
李대통령 국정지지율 61% [한국갤럽] [서울=뉴스핌] 박찬제 기자 = 이재명 대통령의 국정 지지율이 소폭 상승해 61%를 기록했다는 여론조사 결과가 23일 나왔다. 한국갤럽은 지난 20~22일 전국 만 18살 이상 유권자 총 1000명을 대상으로 진행한 조사에서 이 대통령의 직무수행 평가에 '잘하고 있다'며 답한 응답자는 지난주보다 3%포인트(p) 오른 61%로 나타났다. '잘못하고 있다'는 부정 평가는 직전 조사보다 2%p 줄어든 30%로 조사됐다. '의견 없음'은 10%다. 이재명 대통령이 21일 청와대에서 신년 기자회견을 하면서 언론 질문에 답하고 있다. [사진=청와대] 이 대통령 직무 수행의 긍정적 이유는 외교가 27%로 가장 높았다. 뒤이어 '경제·민생'이 14%, '소통'이 8%였다. 부정적 평가 이유로는 '경제·민생'이 22%, '독재·독단'과 '전반적으로 잘못한다'가 각각 7%를 차지했다. '도덕성문제·본인 재판 회피(6%)', '과도한 복지·민생지원금(5%)' 등의 이유도 있었다. 정당 지지도는 여당인 더불어민주당이 2%p 오른 43%, 국민의힘은 2%p 하락한 22%로 조사됐다. 조국혁신당은 3%, 개혁신당 2%, 진보당 1%였다. 무당층은 27%다.이번 조사는 이동통신 3사가 제공한 무선전화 가상번호를 무작위로 추출해 전화조사원이 인터뷰하는 방식으로 이뤄졌다. 표본오차는 95% 신뢰수준에서 ±3.1%포인트다. 응답률은 12.3%다. 자세한 내용은 중앙여론조사심의위원회 홈페이지에서 확인할 수 있다. pcjay@newspim.com 2026-01-23 10:51
사진
한덕수 징역 23년 선고...법정구속 [서울=뉴스핌] 홍석희 박민경 기자 = 윤석열 전 대통령의 내란 행위 방조 등 혐의로 재판에 넘겨진 한덕수 전 국무총리가 21일 1심에서 징역 23년을 선고받았다. 법원은 12·3 비상계엄을 "윤석열 전 대통령의 친위 쿠데타"로 규정하며 조은석 특별검사팀이 구형한 징역 15년을 훌쩍 뛰어넘는 중형을 선고했다. 서울중앙지법 형사합의33부(재판장 이진관)는 이날 내란우두머리방조·내란중요임무종사·위증 등 혐의를 받는 한 전 총리에게 징역 23년을 선고하고, 증거 인멸을 우려로 법정 구속했다. 검정색 정장, 흰색 셔츠에 청록색 넥타이를 매고 법정에 나온 한 전 총리는 재판부가 판결문을 읽는 동안 허리를 꼿꼿이 세우고 무표정으로 앉아 있었다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부는 한 전 총리의 내란중요임무종사 혐의에 대해 유죄로 판단하면서 "12·3 비상계엄 선포와 이에 근거해 위헌·위법한 포고령을 발령하고, 군 병력을 동원해 국회 등을 점거한 행위는 형법상 내란 행위에 해당한다"고 판시했다. 재판부는 한 전 총리가 계엄 직전 국무회의의 절차적 요건을 갖추는 방식으로 내란의 중요한 임무를 종사했다고 봤다. 재판부는 "피고인은 윤석열에게 비상계엄에 대한 우려를 표했을 뿐, 반대한다고 말하지 않았다"며 "추가 소집한 국무위원들이 도착했음에도 윤석열에게 반대하거나, (국무위원들에게) 반대 의사를 표시하라고 말하지 않았다"고 했다. 재판부는 한 전 총리가 이상민 전 행정안전부 장관에게 특정 언론사 단전·단수를 이행하도록 함으로써 내란에 중요한 임무에 종사했다고도 판단했다. 또한 비상계엄 선포 및 포고령 발령과 관련해 한 전 총리에게 국헌 문란의 목적이 있다고 봤다. 재판부는 "피고인은 윤석열이 비상계엄을 하고 군 병력을 동원해 국회의 권능을 불가능하게 해 폭동을 일으킬 것을 충분히 예상할 수 있었다"고 지적했다. 재판부는 또한 사후 선포문과 관련해 허위공문서 작성 혐의, 대통령 기록물 관리법 위반, 공용서류 손상을 유죄로 판단했으며 허위공문서 행사 혐의에 대해서는 무죄로 봤다. 재판부는 양형과 관련해 설시하면서 윤 전 대통령의 비상계엄 선포에 대해 강도 높게 비판했다. 재판부는 "12·3 내란은 윤석열과 추종세력에 의한 위로부터의 내란 행위, 친위 쿠데타"라며 "위로부터의 내란은 위헌성 정도가 아래로부터의 내란과 비교할 수 없다"고 지적했다. 이어 "12·3 내란 과정에서 사망자가 발생하지 않았고 내란 행위는 4시간 만에 종료했으나 무장 군인에 맨몸으로 맞선 국민의 용기에 의한 것"이라며 "더불어 국민의 저항에 바탕해 국회에 진입해 계엄 해제 요구안을 (가결한) 일부 정치인의 노력과 위법에 저항하거나 소극적으로 참여한 일부 군경에 의한 것"이라고 부연했다. 재판부는 "피고인은 국무총리로서 헌법과 법률을 준수해야 할 의무가 있음에도 (내란이) 성공할지도 모른다는 사실에 이를 외면하고 일원으로서 가담했다"며 "2회 공판에서 내란 행위에 대한 법적 평가가 필요하다고 했다가, CCTV 재생 등으로 범죄사실이 탄로나자 마지 못해 최후진술에서 반성한다고 했지만 진정성을 보기 어렵다. 진지하게 반성했다고 볼 수 없다"고 했다. [서울=뉴스핌] 류기찬 기자 = 한덕수 전 국무총리가 21일 오후 서울 서초구 서울중앙지방법원에서 열린 내란 방조 및 내란 중요임무 종사 혐의 관련 1심 선고 공판에 출석하고 있다. 2026.01.21 ryuchan0925@newspim.com 재판부가 "피고인을 징역 23년에 처한다"고 주문을 읽자 한 전 총리는 별다른 표정 변화 없이 "재판장님 결정에 겸허하게 따르도록 하겠다"고 말했다. 이어 한 전 총리 측 변호인이 "도주 가능성이 없고 구속되면 항소심과 대법원의 재판 진행에 있어 방어권에 장애가 생긴다"고 했으나, 재판부는 "도주 우려가 있다"며 법정 구속했다. 이날 재판부가 12·3 비상계엄에 대해 "형법상 내란 행위에 해당한다"는 것을 뛰어넘어 "윤석열과 추종세력에 의한 친위 쿠데타"라고 규정하면서, 내란우두머리 혐의를 받는 윤 전 대통령의 유죄 가능성은 더욱 짙어졌다. 앞서 조은석 특별검사팀은 지난해 11월 26일 결심 공판에서 "피고인은 이 사건 내란 사태를 막을 수 있는 사실상 유일한 사람임에도 국민 전체의 봉사자로서 의무를 저버리고 계엄 선포 전후 일련의 행위를 통해 내란 범행에 가담했다"며 한 전 총리에게 징역 15년을 구형했다. 장우성 특별검사보는 선고 직후 기자들과 만나 "재판부의 판단에 경의를 표한다"며 "(항소 여부는) 특검과 회의해본 다음에 말씀드리겠다"고 밝혔다. 한 전 총리는 국정 2인자인 국무총리로서 대통령의 독단적 권한 행사를 견제해야 할 의무가 있음에도, 윤 전 대통령의 위헌·위법한 비상계엄 선포를 막지 않고 방조한 혐의 등을 받는다. 재판 진행 중에 재판부의 요청에 따라 내란중요임무종사 혐의도 추가됐다. 또한 계엄이 해제된 최초 계엄 선포문의 법률적 결함을 보완하기 위해 사후 선포문을 작성·폐기한 혐의와 헌법재판소의 윤 전 대통령 탄핵심판 변론에 증인으로 출석해 '계엄 선포문을 인지하지 못했다'는 취지로 위증한 혐의도 받는다. hong90@newspim.com 2026-01-21 15:51
기사 번역
결과물 출력을 준비하고 있어요.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동