전체기사 최신뉴스 GAM
KYD 디데이
산업 재계·경영

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능의 미래, 창작의 미래

기사입력 : 2019년03월04일 08:00

최종수정 : 2019년03월04일 08:34

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

호모 사피엔스는 직병렬 구조에 익숙하다 

1970년대 서울역 귀성 기차 구매 장면 사진은 과거 어려운 시절 추억의 한 모습이다. 사진 속을 보면 시민들이 서울역 광장을 꽉 메우고 여러 개의 줄로 쭉 늘어 서서 있다.

      김정호 교수

거기에는 고향의 부모, 형제, 친구들의 모습이 겹쳐져 있다. 서울역 역사 방면에는 매표구가 여러 개가 있게 되고 그 숫자만큼 시민들의 줄이 쭉 병렬로 늘어져 있다.

그러면서 고향의 부모님 뵙고 싶은 마음에 밤을 새워 기다렸을 것이다. 각 열차 구매 행렬은 쭉 늘어선 직렬 종대 행렬로 이루어져 있고, 그 줄이 다시 여러 개의 병렬 줄로 늘어 선다.

이처럼 우리는 생활 속에서 일의 순서를 효과적으로 처리하기 위해서는 순서를 지키는 ‘직렬’ 줄과, 그 일의 처리 속도를 높이는 ‘병렬’ 줄이 같이 존재한다.

질서를 지키기 위해 줄을 잘 서는 것도 국가와 사회의 평가 잣대가 된다.

1980년대 서울역 앞에서 어른들이 자녀와 함께 귀성 기차표를 구매하기 위해 줄을 서 있다. [출처=tistory]

전기 부품의 구성과 연결 상태를 회로 모델 심볼로 도식화한 것이 전기 회로도 이다. 이러한 전기 회로도에는 전기 부품이 직렬과 병렬 연결의 조합으로 이루어져 있다. 예를 들어 저항, 모터, 전등, 스위치 등과 같은 부품이 쭉 직렬(Serial)로 연결되어 있으면 거기서 소모되는 전압을 모두 더해서 총합하면 그 전압 크기만큼을 외부 배터리나 전원 장치에서 공급해야 한다. 이때 모든 부품에 흐르는 전류는 같고 전압의 합은 외부 배터리 전압과 일치한다. 이 법칙을 회로의 전압법칙(Kirchhoff’s Voltage Law)라고 한다. 모든 부품에 일정 전류를 공급할 때 직렬 연결 방식을 선택한다.

반면에 전기 부품을 병렬(Parallel)로 연결하면 모든 부품에 일정한 전압이 걸리고, 각 부품에 흐르는 전류의 총합이 외부에서 공급하는 전류의 양이 된다. 이 법칙을 회로의 전류법칙(Kirchhoff’s Current Law)라고 한다. 이처럼 회로에서 일정한 전류를 흘리는 직렬 연결의 장점과 일정한 전압을 거는 병렬 연결의 장점에 따라 직렬 회로와 병렬회로를 선택한다.

하지만 전체 전기 회로의 구성은 직렬과 병렬회로의 조합으로 이루어 진다. 보통 신호를 처리하는 전자회로도 마찬가지이고, 신호를 주고 받기 위한 통신 회로도 마찬가지이다. 4차 산업혁명의 핵심 부품인 반도체 메모리 내부의 회로도 그렇고 프로세서 반도체 내부 회로도 마찬가지이다.

 

인공지능이 소설 쓰고 영화 만드는 시대 온다

과거 서울역 광장의 귀성객 모습과 전기회로의 경우와 마찬가지로 고성능 인공지능 딥러닝 네트워크도 단위 딥러닝(DNN) 구조의 직병렬(Serial-Parallel) 조합으로 구성된다.
필자가 정의하는 대표적인 직렬형 인공지능 네트워크가 CNN(Convolution Neural Network)이다. CNN은 공지능으로 영상을 인식하는데 탁월한 성능을 나타낸다. 사진을 입력하면 한 단계씩 뉴런 층(Layer)을 지나면서 점차 영상 해석 결과가 구체화하고, 추상화되면서 최종적으로 대상을 인식하고 지표(Tag)를 붙인다. 이처럼 CNN 인공지능에서는 뉴런 층이 순서대로 연결되고 신호가 전파한다.

그런데 언어 인식에 주로 쓰이는 순환신경망(Recurrent Neural Network)은 병렬형 (Parallel) 인공지능 망으로 구분할 수 있다. 언어의 경우 주어, 목적어, 동사 등 순서가 정해져 있다. 우리가 “What is your name?” 하고 묻는다면 질문의 단어 자체가 ‘What’, ‘is’, ‘your’, ‘name’ 으로 시간적으로 순차적으로 등장한다. 따라서 한 단어 한 단어 등장할 때 마다 순서대로 기다리면서 병렬적으로 연결된 신경망이 동작한다. 그리고 한 신경망의 해석과 판독 결과가 그 다음 신경망으로 전달된다. 그래서 시간적으로 순차적으로 동작하는 대표적인 병렬형 신경망이 RNN이 된다.

이러한 병렬형 인공지능인 RNN에서 하나의 입력에 대해서 여러 개의 출력(one-to-many)을 낼 수도 있다. 각 출력은 각각 CNN이나 DNN이 만들어 낸다. 이러한 경우 하나의 사진 이미지 입력에 대해서 사진의 제목을 출력을 내놓는 이미지 캡셔닝(Image Captioning) 작업에 사용할 수 있다. 사진의 제목은 단어들의 나열이므로, 여러 개의 병렬 출력이다.

또한 RNN에서 다수의 입력에 대해서 하나의 출력(many-to-one)을 만들 수도 있다. 이 경우 입력 문장으로부터 긍정적 감성인지 부정적 감성인지를 판별하는 감성 분류(Sentiment Classification) 모델에 사용할 수 있다. 그리고 복수입력- 복수출력(many-to-many)의 모델의 경우에는 입력 문장으로부터 대답을 문장으로 출력하는 챗봇의 경우이다. 또한 입력 문장으로부터 번역된 문장을 출력하는 번역기에 사용할 수 있다.

언어 이해에 주로 쓰이는 순환 신경망(RNN)의 직병렬 조합 구조, [출처=ratsgo’s blog]

 

이러한 CNN, RNN의 직병렬 조합된 복합 인공지능은 스스로 영화를 감상할 수 있다. 그러면 한 장면 한 장면을 파악하고 판단하는 인공지능은 직렬형 CNN 인공지능이 담당한다. 그런데 1초에 60장씩 계속 장면이 순서대로 바뀌어 가는 것을 이해하고 예측하는 것은 RNN과 같은 병렬형 인공지능이 담당하게 된다. 이 인공지능은 영화의 내용과 의미를 파악하고 다음 장면을 예측할 수 있다. 이 복합 인공지능은 영화를 보면서 눈물을 흘릴 수 있고, 웃을 수도 있다.

이처럼 미래 인공지능 네트워크도 다양한 기능을 가진 각 인공지능 망의 직병렬 조합으로 이루어지게 된다. 이렇게 되면 인공지능이 영화를 보면서 텍스트를 자동으로 붙이게 될 수 있고, 그 영화를 감상하게 된다. 그 결과를 기사로도 쓸 수 있게 된다. 여기에 변증법적 인공지능인 GAN(Generative Adversarial Network)을 결합하면 인공지능이 영화나 소설도 직접 쓸 수 있다.

음성, 영상, 텍스트 멀티 모드 복합 (Multi-modal Hybrid) 인공지능의 발전 방향, [출처=KAIST]

 

인공지능이 스스로를 복제한다면?

이처럼 미래 인공지능은 영상, 음성, 언어, 이해와 창작 기능을 바탕으로 더 나아가 소설, 영화 등 복합적 매체 내용을 이해하고, 설명하고, 예측하는 기능을 갖는 방향으로 진화해 갈 것이다. 그리고 창작도 할 수 있게 된다. 더 나아가 예술과 역사 등 인문학도 감상하게 된다. 상황을 파악하고 이해하는 능력도 갖게 되고, 인간처럼 눈치도 갖게 된다. 더 나아가 인간과 같은 창조와 모방의 기능을 갖게 된다. 그러려면 지금까지 개발된 다양한 인공지능 알고리즘이 복합되어 섞이게 된다.

지금까지 인공지능은 학습 데이터를 이용해서 발전했다. 그래서 빅데이터가 중요했다. 따라서 학습 데이터의 선택에 따라 인공지능도 도덕, 이념, 종교도 갖게 된다. 하지만 더 먼 미래에는 데이터가 없어도 스스로 학습하는 비지도 학습 기능을 갖게 된다. 컴퓨터 스스로 데이터를 생산하고 학습하게 된다. 현재 대표적인 비지도 인공지능이 강화학습(Reinforcement Learning)방법이다.

또한 인공지능 자체의 알고리즘도 일정 부분 인공지능 스스로 개발하는 시대가 언젠가는 올 것으로 본다. 그러면 스스로 인공지능이 자신을 개선하고 진화하고 복제하고, 생산한다. 이러한 시대가 되면 인공지능 보유 여부가 인간 사이에 불평등을 만들 수 있다. 더 나아가 ‘인공지능’과 ‘인간’ 사이에 불평등이 올 수 있다.
하지만 이러한 인공지능이 발전하는 데는 더 빠른 컴퓨터, 더 빠른 메모리 반도체가 필요하다. 더 나아가 전력소모를 지금 보다 극단적으로 줄여야 한다. ‘인공지능 천하’ 시대의 도래 여부는 반도체 기술의 성능 발전 여부와 전력 소모를 줄이는 기술에 구현에 달려 있다. 인간이 ‘반도체’ 주권과 ‘전기 공급’ 주권을 놓지 말아야 한다.

 

joungho@kaist.ac.kr

[김정호 카이스트 전기 및 전자공학과 교수]

[뉴스핌 베스트 기사]

사진
트럼프, 韓 4대 그룹 총수들과 골프 [서울=뉴스핌] 송은정 기자 = 도널드 트럼프 미국 대통령이 한국을 비롯한 아시아 주요 기업 총수들과 함께 한나절 동안 '골프 회동'을 진행했다. 글로벌 통상 현안이 산적한 가운데 열린 자리여서 관세와 대미 투자 관련 의견 교환 여부에 관심이 쏠린다. (왼쪽부터)이재용 삼성전자 회장, 최태원 SK 회장, 정의선 현대차 회장, 구광모 LG 회장 [사진=뉴스핌DB] 19일 외신에 따르면 18일(현지시각) 트럼프 대통령은 오전 9시쯤 플로리다주 팜비치의 마러라고 별장을 나와 인근 '트럼프 인터내셔널 골프클럽'으로 이동해 오후 5시쯤까지 라운딩을 즐겼다. 백악관 풀기자단은 "트럼프 대통령이 오전 9시15분 골프장에 도착했다"고 전했다. 이날 행사에는 이재용 삼성전자 회장, 최태원 SK그룹 회장, 정의선 현대차그룹 회장, 구광모 LG그룹 회장, 김동관 한화그룹 부회장 등 한국 주요 대기업 총수들이 참석한 것으로 알려졌다. 일본 소프트뱅크 손정의 회장이 이들을 초청했으며, 일본과 대만 주요 기업인들도 함께 자리했다. 한국의 주요 재벌기업 총수들이 집단적으로 미국의 대통령 및 정·관계 주요 인사들과 함께 골프를 즐긴 것은 사상 유례가 없는 일이다. 통상 4인 1조로 진행되는 아마추어 골프 경기에서 트럼프 대통령이 누구와 한 조를 이뤘는지는 알려지지 않았다. 백악관은 풀기자단의 확인 요청도 거부했다. 골프장 입구는 경호원들에 의해 외부인의 접근이 차단됐다. 골프장 주변도 높은 나무로 빽빽이 둘러싸여 내부 확인은 어려웠던 것으로 알려졌다. 트럼프 대통령이 한국 기업인들과 동반 라운딩을 하지 않았더라도 경기 전후 또는 점심시간이나 휴식시간 등을 활용해 대화를 나눴을 가능성이 있다. 이 자리에서 반도체·자동차·배터리·조선 등 분야에서 이들 기업의 대미 투자 및 관세에 대한 의견이 오갔을지에 대해 관심이 쏠리고 있다. 한편 마러라고 별장 일대에서는 경찰이 기자와 시민의 접근을 통제하며 "VIP들이 있다"며 경계태세를 유지한 것으로 전해졌다. yuniya@newspim.com 2025-10-19 10:00
사진
김세영, 고향 땅에서 '5년만의 통산 13승' [서울=뉴스핌] 박상욱 기자 = '빨간 바지의 마법사'가 화려한 금의환향 퍼포먼스를 보여줬다. 고향 팬들과 가족의 열렬한 응원을 받은 김세영(31·메디힐)이 고향 땅에서 와이어 투 와이어로 천금 같은 우승 트로피를 들어올렸다. 2020년 11월 펠리컨 챔피언십 이후 5년이라는 긴 침묵을 깨고 LPGA 통산 13승을 기록했다. 한국은 올 시즌 6승과 함께 7명째 LPGA 우승자를 배출했다. 김세영은 19일 전남 해남군 파인비치 골프링크스(파72·6785야드)에서 열린 미국여자프로골프(LPGA) 투어 BMW 레이디스 챔피언십 최종일 4라운드에서 5언더파 67타를 적어내 최종 합계 24언더파 264를 기록, 단독 2위 하타오가 나사(일본)를 4타 차로 따돌리고 정상에 올랐다. 24언더파는 대회 72홀 최저타 신기록이다. 우승 상금 34만 5000달러(약 4억9000만원)를 보태 통산 1518만 달러의 상금을 쌓아 로레나 오초아(멕시코)를 제치고 역대 상금 10위에 올랐다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 우승 트로피를 들고 포즈를 취하고 있다. [사진=LPGA] 이날 4타 차 선두로 출발한 김세영은 초반 불안한 출발을 보였다. 3번 홀에서 짧은 파 퍼트를 놓치며 1번 홀에서 버디를 잡은 노예림에게 2타 차까지 쫓겼다. 그러나 5~7번 홀에서 3연속 버디를 잡아 추격자들의 의지를 꺾었다. 이어 9번 홀(파4)에서 버디를 추가하며 2위와 4타 차로 벌려 우승 가능성을 높였다. 후반에는 추격자들이 타수를 줄이지 못하au 단독 2위 경쟁을 하는 사이 김세영은 편안하게 타수를 지켜가며 우승을 굳히는 상황으로 진행됐다. 후반 첫 4개 홀을 파로 지나간 김세영은 14, 15번 홀에서 버디를 보태 2위로 치고 올라온 셀린 부티에(프랑스)와 6타 차까지 벌려 사실상 우승을 확정했다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 챔피언 퍼트를 넣은 뒤 기뻐하고 있다. [사진=LPGA SNS동영상 캡처] 해남 옆동네인 전남 영암군에서 태어난 김세영은 한국 국적 선수로는 2021년 고진영 이후 4년 만에 이 대회 챔피언에 올랐다. 2019년에 시작한 BMW 레이디스 챔피언십은 2023년까지 한국 선수 혹은 한국계 선수들이 우승컵을 가져갔다. 2019년 장하나, 2021년 고진영, 2022년 리디아 고(뉴질랜드), 2023년 이민지(호주)가 우승했고 지난해엔 호주의 해나 그린이 이 대회 최초로 한국 또는 한국계 선수가 아닌 우승자로 이름을 남겼다. 2025 BMW 레이디스 챔피언십 우승자 안세영. [사진=LPGA] 김세영은 2015년 LPGA 투어에 데뷔해 3승을 거두며 신인상을 수상했다. 이후 2020년까지 매년 우승 트로피를 들어 올렸다. 2019년에는 3승을 쓸어 담았고 2020년에는 메이저 대회인 KPMG 위민스 PGA 챔피언십 우승을 포함해 2승을 달성하며 올해의 선수상까지 거머쥐었다. 특히 김세영은 2018년 7월 손베리 크리크 클래식에서 31언더파(63-65-64-65, 257타)로 우승하며 남녀 통틀어 72홀 역대 최저타 및 최다 언더파 신기록을 세웠다. 이전 기록은 LPGA 애니카 소렌스탐의 27언더파, PGA 어니 엘스의 30언더파였다. 한국 선수들은 이날 대약진했다. 김아림이 이날 6타를 줄이며 공동 3위에 올랐고 안나린과 최혜진은 무려 9타씩 줄여 나란히 공동 7위에 랭크됐다. 김효주와 이소미가 공동 10위에 자리해 한국 선수 6명이 톱10에 진입했다. 고진영도 8타를 줄여 고교생 아마추어 오수민과 함께 공동 19위로 순위를 크게 끌어 올렸다. LPGA 투어 BMW 레이디스 챔피언십 대회 중 은퇴 기념 케이크를 선물 받은 지은희(가운데). [사진=LPGA] 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 캐디로 나선 최나연. [사진=LPGA] 19년 LPGA 투어 생활을 마감하는 은퇴 무대로 이번 대회에 공동 24위로 마친 지은희는 9번 홀에서 현역 마지막 퍼트를 버디로 장식하며 갤러리들의 뜨거운 박수 갈채를 받았다. 루키 윤이나는 3타를 줄이는 데 그쳐 공동 24위로 톱10 진입에 실패했다. 2023년 은퇴한 최나연은 이번 대회에서 이정은5의 캐디로 나서 눈길을 끌었다. psoq1337@newspim.com 2025-10-19 16:10
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동