전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능 반도체의 미래

기사입력 : 2019년02월18일 08:00

최종수정 : 2019년02월25일 13:18

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

인공지능 가능케 하는 '퍼셉트론' 아십니까?

현재 인공지능의 핵심으로 등장하는 딥러닝 알고리즘은 퍼셉트론(Perceptron)이라고 불리는 인공 신경망 모형에 기초하고 있다.

김정호 카이스트 교수

퍼셉트론은 인공신경망의 한 종류로서, 1957년에 코넬 항공 연구소의 프랑크 로젠블라트(Frank Rosenblatt)에 의해 고안됐다.

이것은 가장 간단한 인공 신경망의 형태로 동물의 신경계를 본 따서 고안되었다. 이러한 퍼셉트론의 동작 방식은 지금 인공지능 딥러닝의 기초가 된다.

퍼셉트론에서 각 노드의 가중치와 입력치를 곱한 것을 모두 합한 값이 활성함수에 의해 판단되는데, 그 합한 값이 임계치를 넘으면 뉴런이 활성화 되고, 그 신호가 다음 단계로 전달된다. 뉴런이 활성화되지 않으면 신호는 다음 단계로 전달되지 않는다.

딥러닝으로 표현되는 최근 인공지능 구조는 이러한 퍼셉트론을 기본 구조로 해서 여러 층의 연결망을 이룬다.

인공지능 기초 단위인 퍼셉트론 (Perceptron)의 구조. [출처=Towards Data Science]

4차 산업혁명 시대의 디지털 데이터는 묶음 형태로 존재한다. 영상 데이터 형태가 그렇고 빅데이터 자체가 그렇다. 그래서 인공지능이 다루는 입출력 데이터는 ‘벡터’ 혹은 다차원 ‘행렬’ 형태를 갖게 된다. 인공지능을 컴퓨터 소프트웨어 코드로 구현하는 과정을 보면, 그 과정에서 수 많은 ‘벡터’ 혹은 ‘행렬” 데이터를 곱하고 더하기를 반복한다고 볼 수 있다. 퍼셉트론 기능에 곱셈과 덧셈이 필요하기 때문이다.

그런데 한 개의 A 행렬과 다음 B 행렬이 곱해질 때, 하나 하나 숫자가 순서대로 곱해지는 것이 아니라 동시에 이루어 진다. 그리고 더해서 수많은 퍼셉트론 배치 자체가 병렬적이고 학습 계산 자체가 병렬적이다. 그 결과 인공지능 알고리즘 구현과정에서 필요한 다차원 디지털 행렬의 곱셈, 덧셈 과정은 매우 병렬적이다. 그래서 기존의 영상 신호 병렬 처리에 유리한 그래픽 프로세서(GPU) 반도체가 요즈음 인공지능 계산에 편리하게 사용되고 있다.

이러한 배경으로 미래의 인공지능 프로세서를 AIP(Artificial Intelligence Processor) 라고 부른다면 이 인공지능 반도체에서는 데이터 병렬 처리 기능이 최대화 되는 구조가 되어야 한다고 본다. 거기에 더해서 계산과정에서의 결과를 메모리 소자에 빠르게 기억해야 한다. 그래서 처리 속도를 높이기 위해서는 물리적으로 기억 소자의 위치가 프로세서에 병렬적이면서도 동시에 극단적으로 더욱 근접하게 배치되어야 한다. 그래서 병렬처리 성능이 지금의 GPU보다 100 배 이상 향상되어야 한다.

또한 계산과 기억을 하기 위해 걸리는 지연시간(Latency)도 지금보다 100 분의 1 이상으로 줄여야 한다. 다음으로 전력 소모가 지금의 100 분의 1 이하로 줄여져야 한다. 그래야 인공지능 컴퓨터가 배터리로 구동되는 자율주행자동차, 손안의 컴퓨터인 스마트폰 안으로 들어올 수 있다. 그래야 4차 산업혁명이 완성된다.

 

인공지능 반도체의 두 가지 발전 방향

이러한 미래 인공지능 반도체의 요구 조건을 만족하기 위해서는 필자는 두 가지 개발 방향을 제시한다.

이 두 가지 방향으로 GPU 와 메모리 사이의 지속적이고 극단적 병렬화 방법과 퍼셉트론의 개념을 반도체 내부 회로나 소자로 구현하는 방법이다.

먼저, 가장 먼저 가능성이 높고 10년 내로 활발히 개발과 사업화가 진행될 방향은 GPU 프로세서와 디램(DRAM) 메모리의 급격한 병렬화 확대이다. 현재의 대표적인 인공지능 반도체인 HBM(High Bandwidth Memory)의 경우 지금은 GPU와 디램 사이의 연결선의 개수가 약 1000 개 수준이다. 미래에는 이 병렬 연결선이 십 만개, 백 만개까지 증가해서 지금보다 병렬화 수준을 더 급속하게 늘려야 한다.

그러기 위해서는 반도체의 구조가 지금의 2차원 구조에서 3 차원 구조로 진화해야 한다. 연결선의 구조 자체도 3차원이 되고, 연결선 기판도 실리콘이 되어야 한다. 연결선 하나가 초당 100 기가비트(100GBps) 이상 보낼 수 있는 전자파 도파관 구조로 변해야 한다. 이를 통해서 계산 속도도 늘리면서 동시에 전력소모와 시간 지연을 줄일 수 있다. 경우에 따라 메모리 위에 프로세서가 설치되는 PIM(Processor In Memory) 구조가 3차원적으로 적층될 수 있다.

클라우드 컴퓨팅 시스템과 인공지능 서버용 프로세서는 이러한 구조로 발전해야 한다고 본다. 이렇게 되면 기존의 프로세서 주류가 CPU, AP(Application Processor), GPU 에서 3D HBM 과 PIM이 결합된 구조로 진화할 가능성이 크다. 또한 자율주행자동차, 가전기기 등에도 사용될 전망이다. 구글 TPU(텐서 프로세서 유닛), IBM, 마이크로소프트, 엔비디아 기업 계열은 이 방향으로 인공지능 반도체 기술 개발을 추진할 것으로 예측한다.

병렬화가 극단적으로 증가하는 미래 인공지능 반도체의 발전 방향. [출처=KAIST]

 

인공지능 클라우드 서버에 사용되는 구글 TPU 모듈 사진, [출처=Wired]

다음의 방법은 인공지능 핵심 소자인 퍼셉트론을 실리콘 반도체 내부의 회로(Circuit)나 소자(Device)로 구현하는 방향이다. 프로세서와 메모리가 분리되지 않고 한 곳에 복합된다.

그러려면 간단한 행렬 계산과 더하기가 반도체 내부 회로나 소자 자체적으로 수행 가능해야 한다. 간단한 기억 소자도 같이 있어야 한다. 그리고 이러한 간단한 계산 회로와 기억 소자가 마이크로미터 단위(100 만 분의 1 미터)의 크기로 반도체 공간 안에 같이 구현할 수 있어야 한다. 그러니 신 소자와 신 물질이 개발되어야 한다. 이 방법이 구현되면 병렬 데이터가 외부 메모리로 들락거리지 않아도 되기 때문에 병렬성이 더욱 극대화 되면서 동시에 전력 소모, 시간 지연 문제가 해결 될 수 있다. 이러한 시도의 대표적 인공지능 반도체를 뉴로모픽칩(Neuromorphic Chip)이라고 부르기도 한다.

이 인공지능 반도체는 전력 소모가 작아야 하는 손안의 핸드폰으로 인공지능이 들어가는데 꼭 필요한 반도체이다. 스마트 IoT 센서에도 필요한 인공지능 반도체이다. 이러기 위해서는 현재의 실리콘 프로세서나 메모리가 갖고 있는 소자 구조와 물질 그리고 공정이 혁신적으로 바뀌어야 한다.

하지만 이 구조의 단점은 속도가 느리고, 인공지능 알고리즘과 프로그램을 마음대로 바꿀 수 없어 시스템 유연성(Flexibility)이 크게 약화된다. 그래서 응용 분야의 제한이 있을 수 있다. 대표적인 스마트폰 관련 회사인 삼성전자, 애플, 화웨이(Huwawei), 퀄텀 등에서 적극적으로 개발할 필요가 있는 방식이다. 다만 연구와 개발에 장기간이 소요될 전망이다.

반도체 회로와 소자를 이용해 구현하는 인공지능 반도체 뉴로모픽칩, [출처=IEEE Spectrum]
반도체 내부 아날로그 회로를 이용해서 퍼셉트론을 구현하는 인공지능 반도체, [출처=KAIST]


인공지능 반도체는 새로운 기회

미래 인공지능 반도체 방향으로 제시한 두 가지 방향은 각각 장단점을 갖고 있다. 알고리즘 구현의 유연성(Programmability), 현재 기술의 성숙도, 성능, 전력소모, 대량 생산 인프라의 존재 여부, 시장의 크기, 가격, 수율, 안전성에 따라 어느 방법이 더 유망하고 실현 가능한지 달라질 전망이다. 필자는 단기적으로는 병렬화가 증가한 3D HBM-PIM 구조가 당분간 인공지능 프로세서 시장을 주도할 것으로 전망한다. 그리고 장기적으로는 물질과 공정의 혁신으로 새로운 저전력 인공지능 반도체가 나타날 것으로 본다. 이 단계가 되면 모든 사물에 인공지능 기능이 들어가게 된다.

삼성전자, SK 하이닉스로 대표되는 한국 반도체 산업은 반도체 메모리로 집중 성장해 왔다. 4차 산업혁명의 중심인 빅데이터를 기록하기 위해, 그리고 인공지능 서버에는 반도체 메모리의 성능 요구 조건이 계속 증가하고 있다. 또한 그 수요도 지속적으로 증가할 전망이다. 하지만 4차 산업혁명 시대의 또 다른 반도체 산업 성장하는 기회가 바로 ‘인공지능 반도체’이다. 창의적이고 혁신적인 기술 투자와 인력 양성을 통해서 이 절호의 기회를 잡을 수 있어야 한다. 인텔, IBM, AMD, 엔비디아를 뛰어 넘는 인공지능 프로세서 기업이 한국에서 나오기를 고대한다. 새로운 기회의 땅이다.

인공지능 반도체 개발에 투자하고 있는 대표적 글로벌 기업들, [출처=KAIST]

 

joungho@kaist.ac.kr   


[김정호 카이스트 전기 및 전자공학과 교수]

 

[뉴스핌 베스트 기사]

사진
트럼프, 韓 4대 그룹 총수들과 골프 [서울=뉴스핌] 송은정 기자 = 도널드 트럼프 미국 대통령이 한국을 비롯한 아시아 주요 기업 총수들과 함께 한나절 동안 '골프 회동'을 진행했다. 글로벌 통상 현안이 산적한 가운데 열린 자리여서 관세와 대미 투자 관련 의견 교환 여부에 관심이 쏠린다. (왼쪽부터)이재용 삼성전자 회장, 최태원 SK 회장, 정의선 현대차 회장, 구광모 LG 회장 [사진=뉴스핌DB] 19일 외신에 따르면 18일(현지시각) 트럼프 대통령은 오전 9시쯤 플로리다주 팜비치의 마러라고 별장을 나와 인근 '트럼프 인터내셔널 골프클럽'으로 이동해 오후 5시쯤까지 라운딩을 즐겼다. 백악관 풀기자단은 "트럼프 대통령이 오전 9시15분 골프장에 도착했다"고 전했다. 이날 행사에는 이재용 삼성전자 회장, 최태원 SK그룹 회장, 정의선 현대차그룹 회장, 구광모 LG그룹 회장, 김동관 한화그룹 부회장 등 한국 주요 대기업 총수들이 참석한 것으로 알려졌다. 일본 소프트뱅크 손정의 회장이 이들을 초청했으며, 일본과 대만 주요 기업인들도 함께 자리했다. 한국의 주요 재벌기업 총수들이 집단적으로 미국의 대통령 및 정·관계 주요 인사들과 함께 골프를 즐긴 것은 사상 유례가 없는 일이다. 통상 4인 1조로 진행되는 아마추어 골프 경기에서 트럼프 대통령이 누구와 한 조를 이뤘는지는 알려지지 않았다. 백악관은 풀기자단의 확인 요청도 거부했다. 골프장 입구는 경호원들에 의해 외부인의 접근이 차단됐다. 골프장 주변도 높은 나무로 빽빽이 둘러싸여 내부 확인은 어려웠던 것으로 알려졌다. 트럼프 대통령이 한국 기업인들과 동반 라운딩을 하지 않았더라도 경기 전후 또는 점심시간이나 휴식시간 등을 활용해 대화를 나눴을 가능성이 있다. 이 자리에서 반도체·자동차·배터리·조선 등 분야에서 이들 기업의 대미 투자 및 관세에 대한 의견이 오갔을지에 대해 관심이 쏠리고 있다. 한편 마러라고 별장 일대에서는 경찰이 기자와 시민의 접근을 통제하며 "VIP들이 있다"며 경계태세를 유지한 것으로 전해졌다. yuniya@newspim.com 2025-10-19 10:00
사진
김세영, 고향 땅에서 '5년만의 통산 13승' [서울=뉴스핌] 박상욱 기자 = '빨간 바지의 마법사'가 화려한 금의환향 퍼포먼스를 보여줬다. 고향 팬들과 가족의 열렬한 응원을 받은 김세영(31·메디힐)이 고향 땅에서 와이어 투 와이어로 천금 같은 우승 트로피를 들어올렸다. 2020년 11월 펠리컨 챔피언십 이후 5년이라는 긴 침묵을 깨고 LPGA 통산 13승을 기록했다. 한국은 올 시즌 6승과 함께 7명째 LPGA 우승자를 배출했다. 김세영은 19일 전남 해남군 파인비치 골프링크스(파72·6785야드)에서 열린 미국여자프로골프(LPGA) 투어 BMW 레이디스 챔피언십 최종일 4라운드에서 5언더파 67타를 적어내 최종 합계 24언더파 264를 기록, 단독 2위 하타오가 나사(일본)를 4타 차로 따돌리고 정상에 올랐다. 24언더파는 대회 72홀 최저타 신기록이다. 우승 상금 34만 5000달러(약 4억9000만원)를 보태 통산 1518만 달러의 상금을 쌓아 로레나 오초아(멕시코)를 제치고 역대 상금 10위에 올랐다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 우승 트로피를 들고 포즈를 취하고 있다. [사진=LPGA] 이날 4타 차 선두로 출발한 김세영은 초반 불안한 출발을 보였다. 3번 홀에서 짧은 파 퍼트를 놓치며 1번 홀에서 버디를 잡은 노예림에게 2타 차까지 쫓겼다. 그러나 5~7번 홀에서 3연속 버디를 잡아 추격자들의 의지를 꺾었다. 이어 9번 홀(파4)에서 버디를 추가하며 2위와 4타 차로 벌려 우승 가능성을 높였다. 후반에는 추격자들이 타수를 줄이지 못하au 단독 2위 경쟁을 하는 사이 김세영은 편안하게 타수를 지켜가며 우승을 굳히는 상황으로 진행됐다. 후반 첫 4개 홀을 파로 지나간 김세영은 14, 15번 홀에서 버디를 보태 2위로 치고 올라온 셀린 부티에(프랑스)와 6타 차까지 벌려 사실상 우승을 확정했다. 김세영이 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 챔피언 퍼트를 넣은 뒤 기뻐하고 있다. [사진=LPGA SNS동영상 캡처] 해남 옆동네인 전남 영암군에서 태어난 김세영은 한국 국적 선수로는 2021년 고진영 이후 4년 만에 이 대회 챔피언에 올랐다. 2019년에 시작한 BMW 레이디스 챔피언십은 2023년까지 한국 선수 혹은 한국계 선수들이 우승컵을 가져갔다. 2019년 장하나, 2021년 고진영, 2022년 리디아 고(뉴질랜드), 2023년 이민지(호주)가 우승했고 지난해엔 호주의 해나 그린이 이 대회 최초로 한국 또는 한국계 선수가 아닌 우승자로 이름을 남겼다. 2025 BMW 레이디스 챔피언십 우승자 안세영. [사진=LPGA] 김세영은 2015년 LPGA 투어에 데뷔해 3승을 거두며 신인상을 수상했다. 이후 2020년까지 매년 우승 트로피를 들어 올렸다. 2019년에는 3승을 쓸어 담았고 2020년에는 메이저 대회인 KPMG 위민스 PGA 챔피언십 우승을 포함해 2승을 달성하며 올해의 선수상까지 거머쥐었다. 특히 김세영은 2018년 7월 손베리 크리크 클래식에서 31언더파(63-65-64-65, 257타)로 우승하며 남녀 통틀어 72홀 역대 최저타 및 최다 언더파 신기록을 세웠다. 이전 기록은 LPGA 애니카 소렌스탐의 27언더파, PGA 어니 엘스의 30언더파였다. 한국 선수들은 이날 대약진했다. 김아림이 이날 6타를 줄이며 공동 3위에 올랐고 안나린과 최혜진은 무려 9타씩 줄여 나란히 공동 7위에 랭크됐다. 김효주와 이소미가 공동 10위에 자리해 한국 선수 6명이 톱10에 진입했다. 고진영도 8타를 줄여 고교생 아마추어 오수민과 함께 공동 19위로 순위를 크게 끌어 올렸다. LPGA 투어 BMW 레이디스 챔피언십 대회 중 은퇴 기념 케이크를 선물 받은 지은희(가운데). [사진=LPGA] 19일 열린 LPGA 투어 BMW 레이디스 챔피언십 최종일 캐디로 나선 최나연. [사진=LPGA] 19년 LPGA 투어 생활을 마감하는 은퇴 무대로 이번 대회에 공동 24위로 마친 지은희는 9번 홀에서 현역 마지막 퍼트를 버디로 장식하며 갤러리들의 뜨거운 박수 갈채를 받았다. 루키 윤이나는 3타를 줄이는 데 그쳐 공동 24위로 톱10 진입에 실패했다. 2023년 은퇴한 최나연은 이번 대회에서 이정은5의 캐디로 나서 눈길을 끌었다. psoq1337@newspim.com 2025-10-19 16:10
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동