전체기사 최신뉴스 GAM
KYD 디데이
전국 대전·세종·충남

속보

더보기

KAIST, AI로 숨겨진 소재 탐색...신물질 예측

기사입력 : 2020년10월27일 13:00

최종수정 : 2020년10월27일 13:00

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[대전=뉴스핌] 김태진 기자 = KAIST는 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발했다고 27일 밝혔다.

소재연구의 궁극적인 목표는 원하는 물성을 갖는 소재를 발견하는 것이다. 그러나 무기화합물의 가능한 모든 조성과 결정구조를 고려할 때 무한대에 가까운 경우의 수를 샅샅이 탐색하기는 쉽지 않다.

이 같은 문제 해결을 위한 방안으로 컴퓨터 스크리닝 소재 탐색 방법이 널리 사용되고 있지만 찾고자 하는 소재가 스크리닝 후보군에 존재하지 않을 때는 유망한 물질 후보들을 놓치는 경우가 종종 발생한다.

연구진이 개발한 조성-조건 기반 고체 결정 구조 생성모델[사진=카이스트] 2020.10.27 memory4444444@newspim.com

정유성 교수 연구팀이 개발한 소재 역설계 방법은 데이터 학습으로 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있다.

기존의 역설계 방법에서는 원하는 조성을 제어할 수 없었지만 정 교수팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.

정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)을 기반으로 개발됐다.

연구팀은 기존의 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.

연구팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다.

기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.

왼쪽부터 KAIST 정유성 교수, 김성원 박사과정, 노주환 박사과정[사진=카이스트] 2020.10.27 memory4444444@newspim.com

정 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.

이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구) 지원을 받아 수행됐다.

KAIST 생명화학공학과 김성원 박사과정과 노주환 박사과정이 공동 제1 저자로 토론토 대학의 아스푸루-구지크(Aspuru-Guzik) 교수가 공동연구로 참여한 이번 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 `ACS 센트럴 사이언스(Central Science)' 최근호(8월호)에 실렸다.

memory4444444@newspim.com

[뉴스핌 베스트 기사]

사진
김주애, 아빠 따라 첫 외교무대 데뷔 [서울=뉴스핌] 이영종 통일전문기자 = 김정은 북한 국무위원장의 딸 주애(12)가 중국 방문길에 동행한 것으로 확인됐다. 북한 관영 조선중앙통신은 2일 밤 김정은의 베이징역 도착 소식을 전하면서 3장의 사진을 공개했다. [서울=뉴스핌] 이영종 통일전문기자 = 김정은 북한 국무위원장이 2일 오후 전용열차 편으로 베이징역에 도착해 중국 측 인사들의 환영을 받고 있다. 김정은 뒤편으로 딸 주애(붉은 원)와 최선희 외무상이 보인다. 김주애가 해외 방문에 나선 건 이번이 처음이다. [사진=조선중앙통신] 2025.09.02 yjlee@newspim.com 여기에는 환영나온 왕이 외교부장 등 중국 측 인사와 만나는 김정은 바로 뒤에 서있는 딸 주애가 드러난다. 김주애가 해외 방문에 나선 건 지난 2022년 11월 공개석상에 등장한 이후 처음이다. 김주애는 검은색 바지 정장 차림으로 김정은을 따라 전용열차에서 내렸고, 그 뒤는 최선희 외무상이 따랐다. 그러나 붉은 카페트를 걸어가는 의전행사에는 빠져 공식 수행원에 명단을 올리지는 않을 것으로 보인다. 김주애가 중국 전승절(3일) 행사참석을 위해 방중한 김정을을 수행함으로써 그의 후계자 지명 관측에는 더 힘이 실릴 것으로 보인다.  또 시진핑 국가주석 등 중국 지도부와 김정은이 만나는 자리에 주애가 동행할 가능성이 높다는 점에서 '알현 행사' 성격을 띠게 될 것이란 관측도 나온다. yjlee@newspim.com 2025-09-02 22:00
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동