전체기사 최신뉴스 GAM
KYD 디데이
산업 생활경제

속보

더보기

[김정호의 4차혁명 오딧세이] 인공지능을 위한 인공데이터 생산

기사입력 : 2019년12월16일 08:00

최종수정 : 2020년03월10일 16:44

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

※ 번역할 언어 선택

[편집자] 4차 산업혁명은 모든 사물과 인간을 연결하여 빅데이터를 모으고, 이를 이용하여 인공지능으로 학습해, 결국 인공지능이 인간을 대체하는 시대를 말한다. 이러한 4차 산업혁명의 물결이 산업뿐만 아니라 경제, 사회, 정치 등 전 분야에 걸쳐서 막대한 변화를 일으키고 있다.

글로벌뉴스통신사 뉴스핌은 '김정호의 4차혁명 오딧세이' 칼럼을 매주 연재하며 4차 산업혁명의 본질과 영향, 그리고 전망을 독자들에게 쉽게 소개하고자 한다. 4차 산업혁명의 핵심은 바로 인공지능, 빅데이터, 클라우드 컴퓨팅으로 표현할 수 있으며 그 핵심 부품이 반도체이다. 이들 핵심 기술의 개념과 원리, 응용을 설명하여 일반 독자들이 4차 산업혁명에 대해서 공감하고 이해하며 더 나아가 개인과 기업, 국가의 미래를 계획하는 것을 돕고자 한다.

김정호 카이스트(KAIST) 전기 및 전자공학과 교수는 서울대 전기공학과를 졸업하고 미국 미시건대에서 박사 학위를 받았다. AI대학원 겸임교수, IEEE펠로우, 카이스트 ICT석좌교수, 한화 국방 인공지능 융합연구 센터장, 삼성전자 산학협력센터장 등을 겸하고 있다.

데이터가 필요한 인공지능 학습

인공지능 중에서 데이터로 학습하는 방식을 기계학습(Machine Learning)이라고 하고, 그 기계학습 중에서 데이터에 이름(Label)을 붙여서 학습하는 방식을 지도학습(Supervised Learning)이라고 한다.

김정호 교수

데이터에 이름을 붙여야 하는 인공지능 학습 방식이다. 대표적으로 이미지를 인식하는 CNN(Convolutional Neural Network) 알고리즘이 이 방식의 인공지능이 된다. 이미지와 이름을 보고 학습해서 물체를 판단해 낸다.

그런데 이러한 지도학습 방법은 많은 비용과 노동력이 필요해서 결국 시간과 자본이 들어간다. CNN 학습을 위해서는 수백만 장, 수천만 장의 사진을 모으고, 그 사진에 이름을 붙여야 한다. 이러한 작업에 개인이 자발적으로 이름을 붙일 수 있으나 그 한계가 있다.

구글과 페이스북은 인터넷과 SNS로부터 수많은 데이터인 사진 이미지를 모은다. 여기에 모두 직접 사람이 이름을 붙이기는 불가능에 가깝다. 그래서 구글과 페이스북은 사진 상황을 보거나, 해시태그를 이용해서 자동으로 그림에 이름을 붙이는 인공지능 알고리즘 연구를 하기도 한다. 이것이 모두 데이터에 이름을 붙이는 데 필요한 노력이다. 인공지능이 학습하는 데 필요한 비용이다. 데이터와 이름은 무료가 아니다.

사람 중에 똑똑한 사람을 '하나를 알려주면 열을 안다'라고 표현하기도 한다. 학생을 지도하다 보면 그런 학생을 종종 만난다. 나중에는 그 학생이 오히려 나에게 스승이 된다. 그런 학생들을 통해서 거꾸로 배운다. 이럴 때 학교에 있는 교수로 최고의 기쁨을 느낀다. 이런 학생은 스스로 학습하고 연구하는 독자적인 학습과 연구 수행능력을 갖추게 된다.

인공지능을 지도할 때도 마찬가지이다. 학습을 줄이고 최대한 인공지능의 지능을 높이고자 연구한다. 그러면 데이터 모집과 이름 붙이기 수고가 줄어들 수 있다. 그럼 척척 알아서 학습하게 된다.

CNN을 이용한 이미지 분류 및 탐지 방법. [출처=KAIST]

최소한의 데이터로 인공지능 학습

이러한 연구 중, 최근에는 인공지능 연구로 전이학습(Transfer Learning)이라고 불리는 학습 방법이 있다. 한번 배운 학습 결과를 다른 곳에 다시 쓴다는 의미이다. 다시 말하면, 여러 번 배울 필요가 없다는 의미이다. 수학에서 기초 원리를 잘 파악하면 다양한 응용문제를 푸는 원리와 같다.

이처럼 한번 학습한 결과를 다른 응용에 적용하려는 시도를 전이학습(Transfer Learning)이라고 부른다. 학습과정에서 얻는 인공지능망의 구성과 변수도 다른 용도의 인공지능망으로 전이될 수 있다. 그럼 이를 전수한 새로운 인공지능 신경망은 학습량이 줄어든다. 아예 이러한 전체 과정을 스스로 할 수도 있다. 이 방법을 자체학습(Self-learning)이라고 부른다.

최근 연구하는 인공지능 학습 방법이다. 모두 학습 부담을 줄이고 데이터 필요 분량을 줄이려는 시도이다.

아예 한번 교육으로 모든 교육이 끝나는 단수학습(One short Learning) 방법에 대한 연구도 시작됐다. 수학에서 문제 하나만 풀어보면, 유사한 모든 문제를 푸는 능력이라 보면 된다. 천재를 키우는 인공지능 학습 방법으로 보면 된다.

예를 들면 어린이를 학습할 때, 공룡 사진 하나만 보여주면, 그 이름을 영원히 기억한다. 지금의 인공지능 학습은 많은 수의 사진을 보여주면서 학습하고 그 결과로 인공지능망이 정해진다. 단 한 번의 이미지 학습으로 인공지능망을 정하려는 시도인 셈이다.

매우 도전적이지만, 언제인가 인공지능이 이 단계에 도달할 것으로 본다. 이 학습 방법은 '하나를 가르쳐 주면 모든 것을 안다'라는 설명으로도 가능하다. 천재 학생 지도 방법이다. 이 방법 역시 데이터를 최소화하면서 인공지능을 학습하는 방법이라고 본다.

인공 데이터(Artificial Data)의 생성

인공지능에는 학습을 위한 데이터가 필요하다. 일반적으로 데이터가 많을수록 지능이 높아진다. 그래서 빅데이터를 모으려고 한다. 그래서 데이터도 인공적으로 만들려고 한다. 이를 필자는 인공 데이터(Artificial Data)라고 부른다. 인공지능(Artificial Intelligence)처럼 인공 데이터(Artificial Data)도 대세가 된다. 아예 사람의 도움을 받지 않고 인공지능 스스로가 인공지능 학습용 데이터를 만들 수 있는 세상이 된다.

데이터를 인공적으로 만드는 방법은 제일 먼저 원본 이미지를 변형하는 방법이다. 글자를 인식하는 CNN을 위한 손글씨 데이터를 만든다고 하면, 기본 데이터 글씨(MNIST)를 기초로 컴퓨터가 그 글씨체를 변형할 수 있다.

아래위로 길게 늘이거나, 글씨체 자체를 기울이게 할 수 있다. 또는 흐리게 만들거나, 가늘게 만들 수 있다. 이미지에 잡음을 넣을 수 있다. 바탕도 바꿀 수 있다. 또는 색깔을 다르게 입힐 수 있다. 또는 글자 크기를 키울 수도 있다. 컴퓨터와 알고리즘을 결합하면 한 장의 기본 글씨 이미지로 수백 장, 수천 장의 파생 데이터를 컴퓨터로 만들 수 있다.

이렇게 기본 데이터를 변형해 빅데이터를 만들 수 있다. 이 빅데이터는 다시 인공지능 학습에 쓰인다. 인공(Artificial)이 돌고 돈다.

처음부터 아예 컴퓨터가 스스로 데이터를 만들 수 있다. 그 데이터로 인공지능이 학습한다. 예를 들어 자율주행자동차를 위한 학습용 사고 장면 영상을 만든다고 가정하자. 자율주행자동차 학습을 위해 영상을 직접 만드는 것은 매우 위험하고 비싸다. 따라서 사고 영상을 컴퓨터로 인공적으로 만들어 이를 이용해서 인공지능이 학습하는 것이 효율적이다.

제목과 주제를 주면 컴퓨터가 3차원 영상과 이미지를 만들어 내는 연구가 진행 중이다. 그렇게 되면 인공지능이 경험하는 세계도 인공적으로 컴퓨터로 만들어진다. 데이터를 만드는 시간과 비용, 수량의 한계를 인공 데이터 생성을 통해서 해결하려고 한다. 이런 방식을 필자는 데이터 증강(Data Augmentation)이라고 부르기도 한다.

그뿐만 아니라 강화학습(Reinforcement Learning)에서도 인공적으로 계산해서 학습한다. 강화학습에서는 게임을 하듯이 학습한다. 알파고가 이세돌 9단과 바둑을 둘 때 사용한 인공지능 학습 방법이다.

이제는 컴퓨터끼리 게임을 하면서 바둑 기보 데이터를 생산한다. 그러니 이 상황에서도 인공지능 학습을 위한 환경을 컴퓨터가 가상으로 만든다.

강화학습을 이용해서 공학 문제의 최적화 설계도 자동화하려는 시도가 시작되었다. 여기서도 컴퓨터 시뮬레이션으로 데이터가 만들어지고 이를 통해서 학습한다. 이렇게 되면 컴퓨터가 다 알아서 한다. 이제 학습에도 인간의 도움이 점점 덜 필요하게 된다. 학습도 컴퓨터가 담당한다.

CNN에서 손글씨 학습을 위해 사용되는 MINST(Modified national Institute of Standards and Technology) 데이터베이스 이미지. [출처=MINIST]

가상 데이터(Virtual Data)인 세상

인공지능 학습을 위한 데이터를 모으는데 개인의 정보보호와 특허 문제가 발생한다. 학습을 위해 모은 데이터의 주인은 누구이고, 그 개인의 정보는 어디까지 보호해야 할 것인가가 사회적, 법률적, 정치적 쟁점이 될 전망이다. 그래서 빅데이터를 모으기가 점점 더 어렵게 되었다.

그래서 인공지능을 위한 빅데이터를 컴퓨터로 인공으로 만드는 방법이 중요해진다. 앞으로 점점 더 그렇게 될 것으로 예측한다.

이렇게 만들어진 인공 데이터로 다시 인공지능망이 학습한다. 그 학습 결과는 다른 응용 분야로 전이된다. 그 인공지능으로 인공지능 데이터를 만든다. 이제 인간이 파고들 틈이 없다. 인공지능이 인공 데이터도 만들고, 학습도 스스로 한다. 미래 인공지능의 모습이다. 모두 컴퓨터의 성능과 메모리 반도체의 성능이 높아져 가능하다. 인공 세상(Artificial World)이다. 데이터도 가상화(Virtualization)된다. 

김정호 카이스트 전기 및 전자공학과 교수 joungho@kaist.ac.kr

[뉴스핌 베스트 기사]

사진
[변상문의 화랑담배] 제2회 광복군 변상문의 '화랑담배'는 6·25전쟁 이야기이다. 6·25전쟁 때 희생된 모든 분에게 감사드리고, 그 위대한 희생을 기리기 위해 제목을 '화랑담배'로 정했다.  1940년 9월 17일 중국 중경 가릉호텔에서 성대한 행사가 열렸다. 대한민국 임시정부 광복군 창설식이었다. 미국 한인 동포들이 보내온 돈 4만원으로 조직한 군대였다. 지금 돈으로 환산하면 20억 원 정도 된다. 총사령관 이청천 장군, 참모장 이범석 장군, 제1지대장 이준식, 제2지대장 고운기, 제3지대장 김학규, 제5지대장에 나월환을 임명했다. 지대장은 지금의 사단장에 해당한다. 모두 봉오동 전투, 청산리 전투를 비롯하여 남북 만주에서 전개된 항일무장투쟁에 직접 참여하여 활동한 독립군 출신이었다. 한국광복군 훈련반 제1기 졸업사진. [사진= 독립기념관] 임시정부 주석 김구는 포고문을 통해 "국내외 동포들에게 알립니다. 1940년 9월 17일부로 대한민국 광복군을 창설하였습니다. 광복군은 1907년 8월 1일 일제가 대한제국 군대를 해산한 날이 바로 광복군 창설일임을 선언합니다. 광복군은 구 한국군의 후신으로 33년간에 걸친 의병과 독립군의 항일무장투쟁을 계승한 전통 무장 조직입니다"라고 했다. 대한제국 국군-의병-독립군의 군맥(軍脈)과 군혼(軍魂)을 분명하게 잇고 있음을 천명한 것이다. 부대 편성은 소대, 중대, 대대, 연대, 여단, 사단 6단으로 편성하였다. 총 3개 사단을 조직할 계획이었다. 그러나 인원이 적은 상황에서 우선 지대를 만들고, 각 지대를 구대와 분대로 연계한 전투부대를 구성했다. 임시정부에서 1940년 9월 19일 중국 국민당 정부에 통보한 '한국광복군 총사령부 직원 명단'에 의하면, 부대 규모가 총사령부와 4개 단위부대, 여기에다 조선혁명군 부대까지 포함하여 5000여 명이었다. 임시정부에서는 1941년 12월 연합국의 일원으로 일본에 선전포고했다. 1942년에는 미국 측에 "미국이 제주도를 해방 시켜 주면, 중경에 있는 임시정부를 제주도로 옮긴 후, 광복군이 미군과 함께 한반도 상륙작전을 전개하겠다."라고 제안하였다. 이 제안은 실제로 미국 OSS 부대(지금의 CIA)와 1945년 4월부터 8월까지 강도 높은 국내 진공 작전을 준비했다. 주요 훈련은 3개월 기간에 고공낙하, 암살법(권총에 특수장치를 하여 소리 없이 암살하는 방법), 통신(암호의 작성 및 해독법, 무전기 조작 및 수리), 교란 행동, 정보수집, 폭파 등 이었다. 일과는 07:00∼12:00 오전 훈련, 13:00∼18:00 오후 훈련, 19:00∼22:00 야간 훈련이었다. 주요 임무는 대한민국으로 낙하산과 잠수함으로 침투하여 미 공군 공습에 필요한 지형 등의 정보를 제공하고 일본군 군사시설 탐지 및 파괴 지하 유격대를 조직하여 연합군 상륙작전 시 제2선에서 연결하는 작전이었다. 마침내 1945년 8월 7일 모든 훈련을 마치고 국내진공작전 출정식을 개최했다. 개시일은 8월 10일이었다. 출정식 때 장준하 경기도 공작 반장은 "나는 조국광복을 위해 죽음을 선택했습니다. 내가 나의 죽음을 지불하면, 내 능력껏 그 대가가 조국을 위해서 결제될 것입니다. 나의 각오는 한 장의 정수표입니다. 발생인은 장준하, 결제인은 조국입니다"라는 유서까지 작성했다. / 변상문 국방국악문화진흥회 이사장 2025-09-08 08:00
사진
'포스트 이시바' 누구?...고이즈미·다카이치 선두 [서울=뉴스핌] 오영상 기자 = 이시바 시게루 일본 총리가 자민당 총재직 사임을 공식화하면서, 일본 정국의 관심은 차기 자민당 총재 선거로 쏠리고 있다. 집권당 총재가 곧 총리직을 맡는 일본 정치 구조상 이번 총재 선거는 사실상 다음 총리를 뽑는 절차다. 자민당은 조만간 새로운 총재 선거 일정을 확정할 예정이다. 이번 선거에서는 지난 2024년 9월 총재 선거에서 이시바 총리와 경합했던 주요 인사들이 다시 출마할 가능성이 높다. 고이즈미 신지로 농림수산상, 다카이치 사나에 전 경제안보담당상, 하야시 요시마사 관방장관, 모테기 도시미쓰 전 간사장, 고바야시 다카유키 전 경제안보담당상 등이 후보군으로 거론된다. 정국 운영이 소수 여당이라는 제약 속에서 이루어지는 만큼, 차기 총재가 야당과 어떻게 연대할지, 어떤 연립 구도를 짤지가 최대 쟁점으로 꼽힌다. '포스트 이시바' 후보로 꼽히고 있는 고이즈미 신지로 일본 농림수산상 [사진=로이터 뉴스핌] ◆ 고이즈미·다카이치 선두권 현재 여론조사에서는 고이즈미 농림수산상과 다카이치 전 경제안보상이 선두권을 형성하고 있다. 니혼게이자이신문 지난달 29~31일 실시한 여론조사에 따르면 차기 총리에 적합한 인물로 다카이치가 23%, 고이즈미가 22%를 기록했다. 나란히 1, 2위다. 자민당 지지층으로 한정하면 고이즈미가 32%로, 다카이치(17%)를 크게 앞서는 것으로 나타났다. 다카이치는 2024년 총재 선거에서 1차 투표에서 1위를 차지했으나 결선에서 이시바에게 역전패했다. 고이즈미 역시 의원 표에서 선두에 올랐지만 당원 표에서 밀리며 결선에 오르지 못했다. 두 사람 모두 당내 기반과 대중적 인지도를 겸비해 차기 선거에서도 가장 주목받는 주자들이다. 고이즈미 농림수산상은 1981년생(44세)으로 고이즈미 준이치로 전 총리의 차남이다. 2009년 중의원 첫 당선 이후 줄곧 '포스트 아베', '차세대 리더'로 주목받았다. 환경상, 농림수산상을 거쳤으며 개혁 성향과 젊은 이미지로 지지층을 넓혔다. 2024년 총선에서 당 선거대책위원장을 맡았으나 참패 책임을 지고 물러났다. 이후 농림수산상으로 복귀해 쌀 유통 개혁 등 농정 개혁에 매진했다. 대중적 인지도와 '고이즈미 브랜드'라는 정치 자산이 최대 강점으로 꼽힌다. 다카이치 전 경제안보상은 1961년생(64세)으로 보수 강경파로 분류되는 여성 정치인이다. 2021년 총재 선거에 첫 도전해 아베 신조 전 총리의 전폭적 지원을 받으며 3위를 기록했다. 2024년 총재 선거 1차 투표에서 최다 득표(의원 72표, 당원 109표)를 얻었으나 결선에서 이시바 총리에게 역전 당했다. 유일한 여성 후보로서 '보수의 아이콘' 이미지를 갖고 있으며, 아베 전 총리와 가까웠던 의원 그룹이 주된 지지 기반이다. 이시바 정권에서 당직 제안을 거절하며 독자 노선을 유지해 왔다. '포스트 이시바' 후보로 꼽히는 다카이치 사나에 전 일본 경제안보담당상 [사진=로이터 뉴스핌] ◆ 하야시·모테기 등 잠룡도 주목 고이즈미와 다카이치 두 선두 주자 외에 잠룡들의 행보도 주목된다. 하야시 요시마사 관방장관은 옛 기시다파 일부의 지지를 받고 있으며, 이시바 정권의 2인자로서 존재감을 키워왔다. 모테기 도시미쓰 전 간사장은 당내 경험과 풍부한 인맥을 강점으로 삼고, 아소 다로 전 부총리와 교류를 통해 지지 기반을 다지고 있다. 고바야시 다카유키 전 경제안보담당상은 5선 의원으로, 동기 의원들과 옛 니카이파의 지원을 받으며 출마 가능성을 열어두고 있다. ◆ 총재 선거 이후에도 정국 '안갯속' 자민당 총재 선거는 국회의원 표와 당원·당우 표를 합산하는 방식이 원칙이지만, 긴급 시에는 국회의원과 지방 지부 대표만 투표하는 '양원 의원 총회' 방식으로 대체될 수 있다. 이 경우 의원 표의 비중이 커져 파벌 역학이 중요해진다. 차기 총재가 선출되더라도 곧바로 정권 안정으로 이어진다는 보장은 없다. 일본 헌법상 총리는 국회에서 지명되는데, 자민·공명 양당은 현재 중의원과 참의원 모두에서 과반을 잃은 상태다. 따라서 야당이 단일 후보를 세워 결집할 경우, 자민당 총재가 총리로 지명되지 못할 가능성도 배제할 수 없다. 자민당 총재가 총리에 오르더라도, 예산안·세제 개혁 법안 등 국정 운영은 야당 협조 없이는 불가능하다. 이런 이유로 차기 총재는 곧바로 '연립 확대'나 '정책 연대'를 추진할 수밖에 없고, 총재 선거 과정에서도 어떤 야당과 손을 잡을지가 핵심 화두가 된다. 결국 이번 자민당 총재 선거는 단순히 차기 지도자를 뽑는 절차를 넘어, 일본 정치가 다당제 속에서 어떤 연립 구도를 구축할지 시험대가 되는 분기점으로 평가된다. goldendog@newspim.com 2025-09-08 09:26
기사 번역
결과물 출력을 준비하고 있어요.
기사제목
기사가 번역된 내용입니다.
종목 추적기

S&P 500 기업 중 기사 내용이 영향을 줄 종목 추적

결과물 출력을 준비하고 있어요.

긍정 영향 종목

  • Lockheed Martin Corp. Industrials
    우크라이나 안보 지원 강화 기대감으로 방산 수요 증가 직접적. 미·러 긴장 완화 불확실성 속에서도 방위산업 매출 안정성 강화 예상됨.

부정 영향 종목

  • Caterpillar Inc. Industrials
    우크라이나 전쟁 장기화 시 건설 및 중장비 수요 불확실성 직접적. 글로벌 인프라 투자 지연으로 매출 성장 둔화 가능성 있음.
이 내용에 포함된 데이터와 의견은 뉴스핌 AI가 분석한 결과입니다. 정보 제공 목적으로만 작성되었으며, 특정 종목 매매를 권유하지 않습니다. 투자 판단 및 결과에 대한 책임은 투자자 본인에게 있습니다. 주식 투자는 원금 손실 가능성이 있으므로, 투자 전 충분한 조사와 전문가 상담을 권장합니다.
안다쇼핑
Top으로 이동